当前位置: 首页 > news >正文

【RAG】使用llamaindex进行RAG开发

RAG基本步骤

  1. parse:将pdf,doc,ppt等file解析成文本,如markdown。有基本的metadata。
  2. chunk:将markdown文本进行分块,比如按大小分,语义分等。可以为每个块添加更丰富的metadata。
  3. index:将每个分块使用embedding model转换为向量,存储到vector db中,方便后续检索。
  4. retrieve:将user query也用embedding model转换为向量,连接vector db进行相似度搜索,rerank等找到和query最相关的top k个块。
  5. generate:根据上一步返回的最相关块和user query结合,调用llm进行生成。一般会有些后处理。

123步会在user上传知识库文件后执行,45步会在user对知识库进行问答时执行。


我们使用llamaindex完成rag整个过程,此外还需要:

  • minio: object store,存储文件
  • pgvector: vector db,存储embedding向量
  • docker env(非必须)

llamaindex提供了high level的RAG实现,但是我们需要更好的灵活性,所以会用更低层的API来做

  1. 需要设计五个base类,覆盖5个步骤的基础功能
  2. 每个base类有具体实现,能够实现对应功能
  3. 实现类按顺序串联,即可形成pipeline执行QA。其中index和retrieve通过db config保持一致
  4. 每个步骤可作为一个service

代码等忙完再整理

http://www.dtcms.com/a/353143.html

相关文章:

  • 【前端】Devtools使用
  • 日志输出触发的死锁问题排查记录
  • Android 中 spinner / AppCompatSpinner 文字颜色 和 显示样式 源码分析
  • 如何轻松地将数据从安卓设备传输到安卓设备
  • 构建AI智能体:十五、超越关键词搜索:向量数据库如何解锁语义理解新纪元
  • 使用 html2canvas + jspdf 实现页面元素下载为pdf文件
  • Transformer 模型在自动语音识别(ASR)中的应用
  • 华为L420国产笔记本(统信UOS桌面专业版1070)安装openEuler2403虚拟机
  • 基于Spring Boot的民宿服务管理系统-项目分享
  • Python 并行计算进阶:ProcessPoolExecutor 处理 CPU 密集型任务
  • Java设计模式之《外观模式》
  • 广东省省考备考(第八十八天8.27)——判断推理(第八节课)
  • 31. 什么是字符串常量池
  • 2025.8.27链表_链表逆置
  • 【Python-1】字符串连接方式“+“和“,”的区别
  • AI + 旅游 = 应用案例分析(一)
  • TDengine IDMP 5 个实测场景让监控变简单
  • 【和春笋一起学C++】(三十七)类的析构函数
  • rust语言(1.88.0)sqlite数据库rusqlite库(0.37.0)学习笔记
  • Linux 服务器故障全解析:常见问题及处理方法大全
  • 极简风格PDF格式转换解决方案
  • java将doc文件转pdf
  • PDF补丁丁:开源多年,完全免费的多功能 PDF 工具箱
  • Magicodes.IE.Pdf 生成导出PDF文件 bytes Stream FileStreamResult 下载
  • 像WPS Office 一样处理pdf页面尺寸
  • OpenGL 视差贴图
  • UVa11607 Cutting Cakes
  • Java垃圾回收器:从SerialGC到G1的演进/速通
  • 流程控制语句(1)
  • 如何检查 Linux 系统的内存使用情况