import pandas as pd
from sklearn.datasets import load_iris
# 1. Read in the dataset
# Using the Iris dataset from sklearn for demonstration
data = load_iris()
df = pd.DataFrame(data.data, columns=data.feature_names)
df['target'] = data.target
df.head()
分割数据集
from sklearn.model_selection import train_test_split
X = df.drop('target', axis=1) # Features
y = df['target'] # Target variable
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
训练,fit
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier(random_state=42)
model.fit(X_train, y_train)