SpringBoot 自研运行时 SQL 调用树,3 分钟定位慢 SQL!
在复杂的业务系统中,一个接口往往会执行多条SQL,如何直观地看到这些SQL的调用关系和执行情况?本文j将使用SpringBoot + MyBatis拦截器构建一个SQL调用树可视化系统。
项目背景
在日常开发中,我们经常遇到这样的场景:
- 复杂查询链路:一个用户详情接口可能涉及用户基本信息、订单列表、订单详情等多个查询
- 性能问题排查:系统响应慢,需要快速定位是哪个SQL影响了性能
- 开发调试需求:希望能直观地看到SQL的执行顺序和层次关系
基于这些需求,实现了一个基于SpringBoot + MyBatis的SQL调用树可视化系统。
系统功能特性
该系统具有以下核心功能:
核心功能
- MyBatis拦截器:通过拦截器机制捕获SQL执行过程,无需修改业务代码
- 调用树构建:自动构建SQL调用的层次关系
- 可视化展示:使用D3.js实现树形结构的可视化展示
- 性能监控:记录SQL执行时间,自动标识慢SQL
- 统计分析:提供SQL执行统计信息和性能分析
- 数据管理:支持数据的查询、清理和导出
技术实现
- 后端技术:Spring Boot 3.4.5 + MyBatis 3.0.3 + H2数据库
- 前端技术:HTML5 + Tailwind CSS + D3.js v7
- 配置管理:支持动态配置慢SQL阈值等参数
项目结构
技术栈
后端技术栈
- Spring Boot 3.4.5:应用框架
- MyBatis 3.0.3:数据访问层和拦截器
- H2 Database:内存数据库(演示用)
- Lombok:简化代码编写
- Jackson:JSON序列化
前端技术栈
- HTML5 + Tailwind CSS:页面结构和样式
- D3.js v7:数据可视化
- Font Awesome:图标库
- 原生JavaScript:前端交互逻辑
项目目录结构
springboot-sql-tree/
├── src/main/java/com/example/sqltree/
│ ├── SqlTreeApplication.java # 启动类
│ ├── SqlInterceptor.java # MyBatis拦截器
│ ├── SqlCallTreeContext.java # 调用树上下文管理
│ ├── SqlNode.java # SQL节点数据模型
│ ├── SqlTreeController.java # REST API控制器
│ ├── DemoController.java # 演示API
│ ├── UserService.java # 用户服务(演示用)
│ ├── UserMapper.java # 用户数据访问
│ └── OrderMapper.java # 订单数据访问
├── src/main/resources/
│ ├── application.yml # 应用配置
│ ├── schema.sql # 数据库表结构
│ ├── data.sql # 示例数据
│ └── static/
│ ├── index.html # 前端页面
│ └── sql-tree.js # 前端JavaScript
└── pom.xml # Maven配置
核心实现详解
1. MyBatis拦截器:零侵入的核心
这是整个系统的核心组件,通过MyBatis的插件机制实现SQL执行的无感知拦截:
@Component
@Intercepts({@Signature(type = Executor.class, method = "query", args = {MappedStatement.class, Object.class, RowBounds.class, ResultHandler.class}),@Signature(type = Executor.class, method = "update", args = {MappedStatement.class, Object.class})
})
public class SqlInterceptor implements Interceptor {@Autowiredprivate SqlCallTreeContext sqlCallTreeContext;@Overridepublic Object intercept(Invocation invocation) throws Throwable {// 检查是否启用追踪if (!sqlCallTreeContext.isTraceEnabled()) {return invocation.proceed();}long startTime = System.currentTimeMillis();Object[] args = invocation.getArgs();MappedStatement mappedStatement = (MappedStatement) args[0];Object parameter = args[1];// 获取SQL信息BoundSql boundSql = mappedStatement.getBoundSql(parameter);String sql = boundSql.getSql();String sqlType = mappedStatement.getSqlCommandType().name();// 获取调用栈信息StackTraceElement[] stackTrace = Thread.currentThread().getStackTrace();String serviceName = extractServiceName(stackTrace);String methodName = extractMethodName(stackTrace);// 创建SQL节点SqlNode sqlNode = SqlNode.builder().nodeId(UUID.randomUUID().toString()).sql(formatSql(sql)).sqlType(sqlType).threadName(Thread.currentThread().getName()).serviceName(serviceName).methodName(methodName).startTime(LocalDateTime.now()).parameters(extractParameters(boundSql, parameter)).depth(sqlCallTreeContext.getCurrentDepth() + 1).build();// 进入SQL调用sqlCallTreeContext.enter(sqlNode);try {// 执行SQLObject result = invocation.proceed();// 记录执行结果long executionTime = System.currentTimeMillis() - startTime;int affectedRows = calculateAffectedRows(result, sqlType);sqlCallTreeContext.exit(sqlNode, affectedRows, null);return result;} catch (Exception e) {// 记录异常信息sqlCallTreeContext.exit(sqlNode, 0, e.getMessage());throw e;}}private String extractServiceName(StackTraceElement[] stackTrace) {for (StackTraceElement element : stackTrace) {String className = element.getClassName();if (className.contains("Service") && !className.contains("$")) {return className.substring(className.lastIndexOf('.') + 1);}}return "Unknown";}private String extractMethodName(StackTraceElement[] stackTrace) {for (StackTraceElement element : stackTrace) {if (element.getClassName().contains("Service")) {return element.getMethodName();}}return "unknown";}private int calculateAffectedRows(Object result, String sqlType) {if ("SELECT".equals(sqlType) && result instanceof List) {return ((List<?>) result).size();} else if (result instanceof Integer) {return (Integer) result;}return 0;}
}
关键特性:
- 🎯 精准拦截:同时拦截查询和更新操作
- ⚡ 性能优化:可动态开关,避免生产环境性能影响
- 🔒 异常安全:确保业务逻辑不受监控影响
- 📊 丰富信息:自动提取Service调用信息和执行统计
2. 调用树上下文管理器:线程安全的数据管理
SqlCallTreeContext
负责管理SQL调用树的构建和存储,采用线程安全的设计:
@Component
public class SqlCallTreeContext {// 线程本地存储private final ThreadLocal<Stack<SqlNode>> callStack = new ThreadLocal<Stack<SqlNode>>() {@Overrideprotected Stack<SqlNode> initialValue() {return new Stack<>();}};private final ThreadLocal<List<SqlNode>> rootNodes = new ThreadLocal<List<SqlNode>>() {@Overrideprotected List<SqlNode> initialValue() {return new ArrayList<>();}};// 全局会话存储private final Map<String, List<SqlNode>> globalSessions = new ConcurrentHashMap<>();// 统计信息private final AtomicLong totalSqlCount = new AtomicLong(0);private final AtomicLong slowSqlCount = new AtomicLong(0);private final AtomicLong errorSqlCount = new AtomicLong(0);private final AtomicLong totalExecutionTime = new AtomicLong(0);// 配置参数private volatile long slowSqlThreshold = 1000; // 慢SQL阈值(毫秒)private volatile boolean traceEnabled = true; // 追踪开关/*** 进入SQL调用*/public SqlNode enter(SqlNode sqlNode) {if (!traceEnabled) {return sqlNode;}Stack<SqlNode> stack = callStack.get();// 设置深度sqlNode.setDepth(stack.size() + 1);// 建立父子关系if (!stack.isEmpty()) {SqlNode parent = stack.peek();parent.addChild(sqlNode);sqlNode.setParentId(parent.getNodeId());} else {// 根节点rootNodes.get().add(sqlNode);}// 压入栈stack.push(sqlNode);return sqlNode;}/*** 退出SQL调用*/public void exit(SqlNode sqlNode, int affectedRows, String errorMessage) {if (!traceEnabled) {return;}// 设置结束时间和结果sqlNode.setEndTime(LocalDateTime.now());sqlNode.setAffectedRows(affectedRows);sqlNode.setErrorMessage(errorMessage);// 计算执行时间long executionTime = Duration.between(sqlNode.getStartTime(), sqlNode.getEndTime()).toMillis();sqlNode.setExecutionTime(executionTime);// 标记慢SQLif (executionTime > slowSqlThreshold) {sqlNode.setSlowSql(true);slowSqlCount.incrementAndGet();}// 标记错误SQLif (errorMessage != null) {errorSqlCount.incrementAndGet();}// 更新统计totalSqlCount.incrementAndGet();totalExecutionTime.addAndGet(executionTime);// 弹出栈Stack<SqlNode> stack = callStack.get();if (!stack.isEmpty()) {stack.pop();// 如果栈为空,说明调用树完成,保存到全局会话if (stack.isEmpty()) {String sessionKey = generateSessionKey();globalSessions.put(sessionKey, new ArrayList<>(rootNodes.get()));rootNodes.get().clear();}}}/*** 获取当前调用深度*/public int getCurrentDepth() {return callStack.get().size();}/*** 获取当前线程的根节点*/public List<SqlNode> getRootNodes() {return new ArrayList<>(rootNodes.get());}/*** 获取所有会话*/public Map<String, List<SqlNode>> getAllSessions() {return new HashMap<>(globalSessions);}/*** 清理会话数据*/public void clearSessions() {globalSessions.clear();rootNodes.get().clear();callStack.get().clear();}/*** 生成会话键*/private String generateSessionKey() {return Thread.currentThread().getName() + "_" + System.currentTimeMillis();}/*** 获取统计信息*/public SqlStatistics getStatistics() {return SqlStatistics.builder().totalSqlCount(totalSqlCount.get()).slowSqlCount(slowSqlCount.get()).errorSqlCount(errorSqlCount.get()).averageExecutionTime(totalSqlCount.get() > 0 ? totalExecutionTime.get() / totalSqlCount.get() : 0).build();}// Getter和Setter方法public boolean isTraceEnabled() {return traceEnabled;}public void setTraceEnabled(boolean traceEnabled) {this.traceEnabled = traceEnabled;}public long getSlowSqlThreshold() {return slowSqlThreshold;}public void setSlowSqlThreshold(long slowSqlThreshold) {this.slowSqlThreshold = slowSqlThreshold;}
}
设计亮点:
- 🧵 线程安全:使用ThreadLocal确保多线程环境下的数据隔离
- 🌳 智能建树:自动识别父子关系,构建完整调用树
- 📊 实时统计:同步更新性能统计信息
3. 数据模型:完整的SQL节点信息
@Data
public class SqlNode {private String nodeId; // 节点唯一标识private String sql; // SQL语句private String formattedSql; // 格式化后的SQLprivate String sqlType; // SQL类型private int depth; // 调用深度private String threadName; // 线程名称private String serviceName; // Service类名private String methodName; // Service方法名private LocalDateTime startTime; // 开始时间private LocalDateTime endTime; // 结束时间private long executionTime; // 执行耗时private boolean slowSql; // 是否为慢SQLprivate int affectedRows; // 影响行数private String errorMessage; // 错误信息private List<Object> parameters; // SQL参数private List<SqlNode> children; // 子节点// 智能分析方法public boolean isSlowSql(long threshold) {return executionTime > threshold;}public int getTotalNodeCount() {return 1 + children.stream().mapToInt(SqlNode::getTotalNodeCount).sum();}public int getMaxDepth() {return children.isEmpty() ? depth : children.stream().mapToInt(SqlNode::getMaxDepth).max().orElse(depth);}
}
4. RESTful API:完整的数据接口
SqlTreeController
提供完整的REST API接口,支持数据查询、配置管理和系统监控:
@RestController
@RequestMapping("/api/sql-tree")
public class SqlTreeController {@Autowiredprivate SqlCallTreeContext sqlCallTreeContext;/*** 获取当前线程的SQL调用树*/@GetMapping("/current")public ResponseEntity<List<SqlNode>> getCurrentTree() {List<SqlNode> rootNodes = sqlCallTreeContext.getRootNodes();return ResponseEntity.ok(rootNodes);}/*** 获取所有会话的SQL调用树*/@GetMapping("/sessions")public ResponseEntity<Map<String, List<SqlNode>>> getAllSessions() {Map<String, List<SqlNode>> sessions = sqlCallTreeContext.getAllSessions();return ResponseEntity.ok(sessions);}/*** 获取指定会话的SQL调用树*/@GetMapping("/session/{sessionKey}")public ResponseEntity<List<SqlNode>> getSessionTree(@PathVariable String sessionKey) {Map<String, List<SqlNode>> sessions = sqlCallTreeContext.getAllSessions();List<SqlNode> sessionTree = sessions.get(sessionKey);if (sessionTree != null) {return ResponseEntity.ok(sessionTree);} else {return ResponseEntity.notFound().build();}}/*** 清理所有调用树数据*/@DeleteMapping("/clear")public ResponseEntity<Map<String, Object>> clearAllTrees() {sqlCallTreeContext.clearSessions();Map<String, Object> response = new HashMap<>();response.put("success", true);response.put("message", "All SQL trees cleared successfully");response.put("timestamp", LocalDateTime.now());return ResponseEntity.ok(response);}/*** 获取统计信息*/@GetMapping("/statistics")public ResponseEntity<Map<String, Object>> getStatistics() {SqlStatistics stats = sqlCallTreeContext.getStatistics();Map<String, Object> response = new HashMap<>();response.put("totalSqlCount", stats.getTotalSqlCount());response.put("slowSqlCount", stats.getSlowSqlCount());response.put("errorSqlCount", stats.getErrorSqlCount());response.put("averageExecutionTime", stats.getAverageExecutionTime());response.put("slowSqlThreshold", sqlCallTreeContext.getSlowSqlThreshold());response.put("traceEnabled", sqlCallTreeContext.isTraceEnabled());return ResponseEntity.ok(response);}/*** 配置追踪参数*/@PostMapping("/config")public ResponseEntity<Map<String, Object>> updateConfig(@RequestBody Map<String, Object> config) {Map<String, Object> response = new HashMap<>();if (config.containsKey("slowSqlThreshold")) {long threshold = ((Number) config.get("slowSqlThreshold")).longValue();sqlCallTreeContext.setSlowSqlThreshold(threshold);response.put("slowSqlThreshold", threshold);}if (config.containsKey("traceEnabled")) {boolean enabled = (Boolean) config.get("traceEnabled");sqlCallTreeContext.setTraceEnabled(enabled);response.put("traceEnabled", enabled);}response.put("success", true);response.put("message", "Configuration updated successfully");return ResponseEntity.ok(response);}/*** 分析慢SQL*/@GetMapping("/analysis/slow-sql")public ResponseEntity<List<SqlNode>> getSlowSqlAnalysis() {Map<String, List<SqlNode>> sessions = sqlCallTreeContext.getAllSessions();List<SqlNode> slowSqlNodes = new ArrayList<>();for (List<SqlNode> sessionNodes : sessions.values()) {collectSlowSqlNodes(sessionNodes, slowSqlNodes);}// 按执行时间降序排序slowSqlNodes.sort((a, b) -> Long.compare(b.getExecutionTime(), a.getExecutionTime()));return ResponseEntity.ok(slowSqlNodes);}/*** 导出数据*/@GetMapping("/export")public ResponseEntity<Map<String, Object>> exportData() {Map<String, Object> exportData = new HashMap<>();exportData.put("sessions", sqlCallTreeContext.getAllSessions());exportData.put("statistics", sqlCallTreeContext.getStatistics());exportData.put("exportTime", LocalDateTime.now());exportData.put("version", "1.0");return ResponseEntity.ok(exportData);}/*** 系统状态检查*/@GetMapping("/health")public ResponseEntity<Map<String, Object>> healthCheck() {Map<String, Object> health = new HashMap<>();health.put("status", "UP");health.put("traceEnabled", sqlCallTreeContext.isTraceEnabled());health.put("slowSqlThreshold", sqlCallTreeContext.getSlowSqlThreshold());health.put("timestamp", LocalDateTime.now());return ResponseEntity.ok(health);}/*** 递归收集慢SQL节点*/private void collectSlowSqlNodes(List<SqlNode> nodes, List<SqlNode> slowSqlNodes) {for (SqlNode node : nodes) {if (node.isSlowSql()) {slowSqlNodes.add(node);}if (node.getChildren() != null && !node.getChildren().isEmpty()) {collectSlowSqlNodes(node.getChildren(), slowSqlNodes);}}}
}
5. 前端可视化实现
前端使用D3.js实现交互式的SQL调用树可视化,主要包含以下功能:
// sql-tree.js - 主要的可视化逻辑
class SqlTreeVisualizer {constructor() {this.width = 1200;this.height = 800;this.margin = { top: 50, right: 150, bottom: 50, left: 150 };// 初始化SVG容器this.svg = d3.select('#tree-container').append('svg').attr('width', this.width).attr('height', this.height);this.g = this.svg.append('g').attr('transform', `translate(${this.margin.left},${this.margin.top})`);// 配置树布局this.tree = d3.tree().size([this.height - this.margin.top - this.margin.bottom, this.width - this.margin.left - this.margin.right]);// 初始化工具提示this.tooltip = d3.select('body').append('div').attr('class', 'tooltip').style('opacity', 0);}/*** 渲染SQL调用树*/render(sessions) {this.g.selectAll('*').remove();if (!sessions || Object.keys(sessions).length === 0) {this.showEmptyState();return;}// 选择第一个会话进行展示const sessionKey = Object.keys(sessions)[0];const rootNodes = sessions[sessionKey];if (rootNodes && rootNodes.length > 0) {this.renderTree(rootNodes[0]);}}/*** 渲染单个调用树*/renderTree(rootNode) {// 构建D3层次结构const root = d3.hierarchy(rootNode, d => d.children);// 计算节点位置this.tree(root);// 绘制连接线const links = this.g.selectAll('.link').data(root.links()).enter().append('path').attr('class', 'link').attr('d', d3.linkHorizontal().x(d => d.y).y(d => d.x)).style('fill', 'none').style('stroke', '#94a3b8').style('stroke-width', '2px').style('stroke-opacity', 0.6);// 绘制节点组const nodes = this.g.selectAll('.node').data(root.descendants()).enter().append('g').attr('class', 'node').attr('transform', d => `translate(${d.y},${d.x})`);// 绘制节点圆圈nodes.append('circle').attr('r', 10).style('fill', d => this.getNodeColor(d.data)).style('stroke', '#1e293b').style('stroke-width', '2px').style('cursor', 'pointer');// 添加节点文本nodes.append('text').attr('dy', '.35em').attr('x', d => d.children ? -15 : 15).style('text-anchor', d => d.children ? 'end' : 'start').style('font-size', '12px').style('font-weight', '500').style('fill', '#1e293b').text(d => this.getNodeLabel(d.data));// 添加交互事件nodes.on('mouseover', (event, d) => this.showTooltip(event, d.data)).on('mouseout', () => this.hideTooltip()).on('click', (event, d) => this.showNodeDetails(d.data));}/*** 获取节点颜色*/getNodeColor(data) {if (data.errorMessage) {return '#ef4444'; // 错误:红色}if (data.slowSql) {return '#f59e0b'; // 慢SQL:橙色}switch (data.sqlType) {case 'SELECT':return '#10b981'; // 查询:绿色case 'INSERT':return '#3b82f6'; // 插入:蓝色case 'UPDATE':return '#8b5cf6'; // 更新:紫色case 'DELETE':return '#ef4444'; // 删除:红色default:return '#6b7280'; // 默认:灰色}}/*** 获取节点标签*/getNodeLabel(data) {const time = data.executionTime || 0;return `${data.sqlType} (${time}ms)`;}/*** 显示工具提示*/showTooltip(event, data) {const tooltipContent = `<div class="font-semibold text-gray-900">${data.sqlType} 操作</div><div class="text-sm text-gray-600 mt-1"><div>执行时间: ${data.executionTime || 0}ms</div><div>影响行数: ${data.affectedRows || 0}</div><div>服务: ${data.serviceName || 'Unknown'}</div><div>方法: ${data.methodName || 'unknown'}</div>${data.errorMessage ? `<div class="text-red-600">错误: ${data.errorMessage}</div>` : ''}</div>`;this.tooltip.transition().duration(200).style('opacity', .9);this.tooltip.html(tooltipContent).style('left', (event.pageX + 10) + 'px').style('top', (event.pageY - 28) + 'px');}/*** 隐藏工具提示*/hideTooltip() {this.tooltip.transition().duration(500).style('opacity', 0);}/*** 显示空状态*/showEmptyState() {this.g.append('text').attr('x', (this.width - this.margin.left - this.margin.right) / 2).attr('y', (this.height - this.margin.top - this.margin.bottom) / 2).attr('text-anchor', 'middle').style('font-size', '18px').style('fill', '#6b7280').text('暂无SQL调用数据');}/*** 显示节点详情*/showNodeDetails(data) {// 在侧边栏显示详细信息const detailsPanel = document.getElementById('node-details');if (detailsPanel) {detailsPanel.innerHTML = `<h3 class="text-lg font-semibold mb-4">SQL详情</h3><div class="space-y-2"><div><span class="font-medium">类型:</span> ${data.sqlType}</div><div><span class="font-medium">执行时间:</span> ${data.executionTime || 0}ms</div><div><span class="font-medium">影响行数:</span> ${data.affectedRows || 0}</div><div><span class="font-medium">服务:</span> ${data.serviceName || 'Unknown'}</div><div><span class="font-medium">方法:</span> ${data.methodName || 'unknown'}</div><div><span class="font-medium">线程:</span> ${data.threadName || 'unknown'}</div>${data.sql ? `<div><span class="font-medium">SQL:</span><pre class="mt-1 p-2 bg-gray-100 rounded text-sm">${data.sql}</pre></div>` : ''}${data.parameters ? `<div><span class="font-medium">参数:</span><pre class="mt-1 p-2 bg-gray-100 rounded text-sm">${data.parameters}</pre></div>` : ''}${data.errorMessage ? `<div><span class="font-medium text-red-600">错误:</span><div class="mt-1 p-2 bg-red-50 rounded text-sm text-red-700">${data.errorMessage}</div></div>` : ''}</div>`;}}
}
核心特性:
- 🌳 树形布局:清晰展示SQL调用层次关系
- 🎨 颜色编码:绿色(正常)、红色(慢SQL)
- 🖱️ 交互操作:点击节点查看详情,悬停显示提示
- 🔍 智能筛选:支持按执行时间、SQL类型等条件筛选
- 📊 实时刷新:支持自动/手动刷新数据
快速开始
环境要求
- Java 21+
- Maven 3.6+
- 现代浏览器(支持ES6+)
访问系统
启动成功后,可以通过以下地址访问:
- 可视化界面:http://localhost:8080/index.html
- H2数据库控制台:http://localhost:8080/h2-console
-
- JDBC URL:
jdbc:h2:mem:testdb
- 用户名:
sa
- 密码: (空)
- JDBC URL:
项目配置
核心依赖(pom.xml)
<dependencies><!-- Spring Boot 3.4.5 --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId><version>3.4.5</version></dependency><!-- MyBatis 3.0.3 --><dependency><groupId>org.mybatis.spring.boot</groupId><artifactId>mybatis-spring-boot-starter</artifactId><version>3.0.3</version></dependency><!-- H2 Database --><dependency><groupId>com.h2database</groupId><artifactId>h2</artifactId><scope>runtime</scope></dependency><!-- Lombok --><dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId><optional>true</optional></dependency>
</dependencies>
应用配置(application.yml)
server:port: 8080spring:application:name: springboot-sql-treedatasource:url: jdbc:h2:mem:testdbdriver-class-name: org.h2.Driverusername: sapassword: schema: classpath:schema.sqldata: classpath:data.sqlh2:console:enabled: truepath: /h2-consolemybatis:mapper-locations: classpath:mapper/*.xmltype-aliases-package: com.example.sqltree.entityconfiguration:map-underscore-to-camel-case: truelazy-loading-enabled: truecache-enabled: truelog-impl: org.apache.ibatis.logging.slf4j.Slf4jImpl
实际应用场景
开发调试场景
场景1:复杂查询性能分析
当调用 /api/demo/user/1/detail
接口时,系统会自动捕获以下SQL调用链:
UserService.getUserDetailWithOrders()
├── SELECT * FROM users WHERE id = ? (2ms)
└── SELECT * FROM orders WHERE user_id = ? (15ms)└── SELECT * FROM order_items WHERE order_id IN (...) (45ms)
通过可视化界面可以清晰看到:
- 总执行时间:62ms
- SQL调用深度:2层
- 性能瓶颈:order_items查询耗时最长
场景2:慢SQL识别
系统自动标识执行时间超过阈值(默认1000ms)的SQL:
{"nodeId": "uuid-123","sql": "SELECT * FROM orders o JOIN users u ON o.user_id = u.id WHERE o.status = ?","executionTime": 1250,"slowSql": true,"serviceName": "OrderService","methodName": "getOrdersWithUserInfo"
}
数据监控
统计信息示例
{"totalSqlCount": 1247,"slowSqlCount": 23,"errorSqlCount": 5,"averageExecutionTime": 35.6,"slowSqlThreshold": 1000,"traceEnabled": true
}
慢SQL分析报告
系统提供按执行时间排序的慢SQL列表:
[{"sql": "SELECT COUNT(*) FROM orders WHERE created_at BETWEEN ? AND ?","executionTime": 2150,"serviceName": "ReportService","methodName": "generateDailyReport","affectedRows": 1},{"sql": "UPDATE users SET last_login = ? WHERE id IN (...)","executionTime": 1890,"serviceName": "UserService","methodName": "batchUpdateLastLogin","affectedRows": 156}
]
技术特点
零侵入设计
- 基于MyBatis拦截器实现,无需修改现有业务代码
- 通过注解和配置即可启用SQL监控功能
- 支持动态开启/关闭追踪功能
线程安全
- 使用
ThreadLocal
确保多线程环境下的数据隔离 ConcurrentHashMap
保证全局会话存储的线程安全- 无锁设计,避免性能瓶颈
内存友好
- 会话级别的数据存储,避免全局数据累积
- 支持手动清理和自动过期机制
- 轻量级数据结构,内存占用小
总结
这个项目展示了如何结合Spring Boot生态和前端技术,构建一个实用的SQL监控工具,为日常开发和性能优化提供有力支持。
https://github.com/yuboon/java-examples/tree/master/springboot-sql-tree