当前位置: 首页 > news >正文

SpringBoot 自研运行时 SQL 调用树,3 分钟定位慢 SQL!

在复杂的业务系统中,一个接口往往会执行多条SQL,如何直观地看到这些SQL的调用关系和执行情况?本文j将使用SpringBoot + MyBatis拦截器构建一个SQL调用树可视化系统。

在这里插入图片描述
在这里插入图片描述

项目背景

在日常开发中,我们经常遇到这样的场景:

  • 复杂查询链路:一个用户详情接口可能涉及用户基本信息、订单列表、订单详情等多个查询
  • 性能问题排查:系统响应慢,需要快速定位是哪个SQL影响了性能
  • 开发调试需求:希望能直观地看到SQL的执行顺序和层次关系

基于这些需求,实现了一个基于SpringBoot + MyBatis的SQL调用树可视化系统。

系统功能特性

该系统具有以下核心功能:

核心功能

  • MyBatis拦截器:通过拦截器机制捕获SQL执行过程,无需修改业务代码
  • 调用树构建:自动构建SQL调用的层次关系
  • 可视化展示:使用D3.js实现树形结构的可视化展示
  • 性能监控:记录SQL执行时间,自动标识慢SQL
  • 统计分析:提供SQL执行统计信息和性能分析
  • 数据管理:支持数据的查询、清理和导出

技术实现

  • 后端技术:Spring Boot 3.4.5 + MyBatis 3.0.3 + H2数据库
  • 前端技术:HTML5 + Tailwind CSS + D3.js v7
  • 配置管理:支持动态配置慢SQL阈值等参数

项目结构

技术栈

后端技术栈

  • Spring Boot 3.4.5:应用框架
  • MyBatis 3.0.3:数据访问层和拦截器
  • H2 Database:内存数据库(演示用)
  • Lombok:简化代码编写
  • Jackson:JSON序列化

前端技术栈

  • HTML5 + Tailwind CSS:页面结构和样式
  • D3.js v7:数据可视化
  • Font Awesome:图标库
  • 原生JavaScript:前端交互逻辑

项目目录结构

springboot-sql-tree/
├── src/main/java/com/example/sqltree/
│   ├── SqlTreeApplication.java          # 启动类
│   ├── SqlInterceptor.java              # MyBatis拦截器
│   ├── SqlCallTreeContext.java          # 调用树上下文管理
│   ├── SqlNode.java                     # SQL节点数据模型
│   ├── SqlTreeController.java           # REST API控制器
│   ├── DemoController.java              # 演示API
│   ├── UserService.java                 # 用户服务(演示用)
│   ├── UserMapper.java                  # 用户数据访问
│   └── OrderMapper.java                 # 订单数据访问
├── src/main/resources/
│   ├── application.yml                  # 应用配置
│   ├── schema.sql                       # 数据库表结构
│   ├── data.sql                         # 示例数据
│   └── static/
│       ├── index.html                   # 前端页面
│       └── sql-tree.js                  # 前端JavaScript
└── pom.xml                              # Maven配置

核心实现详解

1. MyBatis拦截器:零侵入的核心

这是整个系统的核心组件,通过MyBatis的插件机制实现SQL执行的无感知拦截:

@Component
@Intercepts({@Signature(type = Executor.class, method = "query", args = {MappedStatement.class, Object.class, RowBounds.class, ResultHandler.class}),@Signature(type = Executor.class, method = "update", args = {MappedStatement.class, Object.class})
})
public class SqlInterceptor implements Interceptor {@Autowiredprivate SqlCallTreeContext sqlCallTreeContext;@Overridepublic Object intercept(Invocation invocation) throws Throwable {// 检查是否启用追踪if (!sqlCallTreeContext.isTraceEnabled()) {return invocation.proceed();}long startTime = System.currentTimeMillis();Object[] args = invocation.getArgs();MappedStatement mappedStatement = (MappedStatement) args[0];Object parameter = args[1];// 获取SQL信息BoundSql boundSql = mappedStatement.getBoundSql(parameter);String sql = boundSql.getSql();String sqlType = mappedStatement.getSqlCommandType().name();// 获取调用栈信息StackTraceElement[] stackTrace = Thread.currentThread().getStackTrace();String serviceName = extractServiceName(stackTrace);String methodName = extractMethodName(stackTrace);// 创建SQL节点SqlNode sqlNode = SqlNode.builder().nodeId(UUID.randomUUID().toString()).sql(formatSql(sql)).sqlType(sqlType).threadName(Thread.currentThread().getName()).serviceName(serviceName).methodName(methodName).startTime(LocalDateTime.now()).parameters(extractParameters(boundSql, parameter)).depth(sqlCallTreeContext.getCurrentDepth() + 1).build();// 进入SQL调用sqlCallTreeContext.enter(sqlNode);try {// 执行SQLObject result = invocation.proceed();// 记录执行结果long executionTime = System.currentTimeMillis() - startTime;int affectedRows = calculateAffectedRows(result, sqlType);sqlCallTreeContext.exit(sqlNode, affectedRows, null);return result;} catch (Exception e) {// 记录异常信息sqlCallTreeContext.exit(sqlNode, 0, e.getMessage());throw e;}}private String extractServiceName(StackTraceElement[] stackTrace) {for (StackTraceElement element : stackTrace) {String className = element.getClassName();if (className.contains("Service") && !className.contains("$")) {return className.substring(className.lastIndexOf('.') + 1);}}return "Unknown";}private String extractMethodName(StackTraceElement[] stackTrace) {for (StackTraceElement element : stackTrace) {if (element.getClassName().contains("Service")) {return element.getMethodName();}}return "unknown";}private int calculateAffectedRows(Object result, String sqlType) {if ("SELECT".equals(sqlType) && result instanceof List) {return ((List<?>) result).size();} else if (result instanceof Integer) {return (Integer) result;}return 0;}
}

关键特性

  • 🎯 精准拦截:同时拦截查询和更新操作
  • 性能优化:可动态开关,避免生产环境性能影响
  • 🔒 异常安全:确保业务逻辑不受监控影响
  • 📊 丰富信息:自动提取Service调用信息和执行统计

2. 调用树上下文管理器:线程安全的数据管理

SqlCallTreeContext负责管理SQL调用树的构建和存储,采用线程安全的设计:

@Component
public class SqlCallTreeContext {// 线程本地存储private final ThreadLocal<Stack<SqlNode>> callStack = new ThreadLocal<Stack<SqlNode>>() {@Overrideprotected Stack<SqlNode> initialValue() {return new Stack<>();}};private final ThreadLocal<List<SqlNode>> rootNodes = new ThreadLocal<List<SqlNode>>() {@Overrideprotected List<SqlNode> initialValue() {return new ArrayList<>();}};// 全局会话存储private final Map<String, List<SqlNode>> globalSessions = new ConcurrentHashMap<>();// 统计信息private final AtomicLong totalSqlCount = new AtomicLong(0);private final AtomicLong slowSqlCount = new AtomicLong(0);private final AtomicLong errorSqlCount = new AtomicLong(0);private final AtomicLong totalExecutionTime = new AtomicLong(0);// 配置参数private volatile long slowSqlThreshold = 1000; // 慢SQL阈值(毫秒)private volatile boolean traceEnabled = true; // 追踪开关/*** 进入SQL调用*/public SqlNode enter(SqlNode sqlNode) {if (!traceEnabled) {return sqlNode;}Stack<SqlNode> stack = callStack.get();// 设置深度sqlNode.setDepth(stack.size() + 1);// 建立父子关系if (!stack.isEmpty()) {SqlNode parent = stack.peek();parent.addChild(sqlNode);sqlNode.setParentId(parent.getNodeId());} else {// 根节点rootNodes.get().add(sqlNode);}// 压入栈stack.push(sqlNode);return sqlNode;}/*** 退出SQL调用*/public void exit(SqlNode sqlNode, int affectedRows, String errorMessage) {if (!traceEnabled) {return;}// 设置结束时间和结果sqlNode.setEndTime(LocalDateTime.now());sqlNode.setAffectedRows(affectedRows);sqlNode.setErrorMessage(errorMessage);// 计算执行时间long executionTime = Duration.between(sqlNode.getStartTime(), sqlNode.getEndTime()).toMillis();sqlNode.setExecutionTime(executionTime);// 标记慢SQLif (executionTime > slowSqlThreshold) {sqlNode.setSlowSql(true);slowSqlCount.incrementAndGet();}// 标记错误SQLif (errorMessage != null) {errorSqlCount.incrementAndGet();}// 更新统计totalSqlCount.incrementAndGet();totalExecutionTime.addAndGet(executionTime);// 弹出栈Stack<SqlNode> stack = callStack.get();if (!stack.isEmpty()) {stack.pop();// 如果栈为空,说明调用树完成,保存到全局会话if (stack.isEmpty()) {String sessionKey = generateSessionKey();globalSessions.put(sessionKey, new ArrayList<>(rootNodes.get()));rootNodes.get().clear();}}}/*** 获取当前调用深度*/public int getCurrentDepth() {return callStack.get().size();}/*** 获取当前线程的根节点*/public List<SqlNode> getRootNodes() {return new ArrayList<>(rootNodes.get());}/*** 获取所有会话*/public Map<String, List<SqlNode>> getAllSessions() {return new HashMap<>(globalSessions);}/*** 清理会话数据*/public void clearSessions() {globalSessions.clear();rootNodes.get().clear();callStack.get().clear();}/*** 生成会话键*/private String generateSessionKey() {return Thread.currentThread().getName() + "_" + System.currentTimeMillis();}/*** 获取统计信息*/public SqlStatistics getStatistics() {return SqlStatistics.builder().totalSqlCount(totalSqlCount.get()).slowSqlCount(slowSqlCount.get()).errorSqlCount(errorSqlCount.get()).averageExecutionTime(totalSqlCount.get() > 0 ? totalExecutionTime.get() / totalSqlCount.get() : 0).build();}// Getter和Setter方法public boolean isTraceEnabled() {return traceEnabled;}public void setTraceEnabled(boolean traceEnabled) {this.traceEnabled = traceEnabled;}public long getSlowSqlThreshold() {return slowSqlThreshold;}public void setSlowSqlThreshold(long slowSqlThreshold) {this.slowSqlThreshold = slowSqlThreshold;}
}

设计亮点

  • 🧵 线程安全:使用ThreadLocal确保多线程环境下的数据隔离
  • 🌳 智能建树:自动识别父子关系,构建完整调用树
  • 📊 实时统计:同步更新性能统计信息

3. 数据模型:完整的SQL节点信息

@Data
public class SqlNode {private String nodeId;              // 节点唯一标识private String sql;                 // SQL语句private String formattedSql;        // 格式化后的SQLprivate String sqlType;             // SQL类型private int depth;                  // 调用深度private String threadName;          // 线程名称private String serviceName;         // Service类名private String methodName;          // Service方法名private LocalDateTime startTime;    // 开始时间private LocalDateTime endTime;      // 结束时间private long executionTime;         // 执行耗时private boolean slowSql;            // 是否为慢SQLprivate int affectedRows;           // 影响行数private String errorMessage;        // 错误信息private List<Object> parameters;    // SQL参数private List<SqlNode> children;     // 子节点// 智能分析方法public boolean isSlowSql(long threshold) {return executionTime > threshold;}public int getTotalNodeCount() {return 1 + children.stream().mapToInt(SqlNode::getTotalNodeCount).sum();}public int getMaxDepth() {return children.isEmpty() ? depth : children.stream().mapToInt(SqlNode::getMaxDepth).max().orElse(depth);}
}

4. RESTful API:完整的数据接口

SqlTreeController提供完整的REST API接口,支持数据查询、配置管理和系统监控:

@RestController
@RequestMapping("/api/sql-tree")
public class SqlTreeController {@Autowiredprivate SqlCallTreeContext sqlCallTreeContext;/*** 获取当前线程的SQL调用树*/@GetMapping("/current")public ResponseEntity<List<SqlNode>> getCurrentTree() {List<SqlNode> rootNodes = sqlCallTreeContext.getRootNodes();return ResponseEntity.ok(rootNodes);}/*** 获取所有会话的SQL调用树*/@GetMapping("/sessions")public ResponseEntity<Map<String, List<SqlNode>>> getAllSessions() {Map<String, List<SqlNode>> sessions = sqlCallTreeContext.getAllSessions();return ResponseEntity.ok(sessions);}/*** 获取指定会话的SQL调用树*/@GetMapping("/session/{sessionKey}")public ResponseEntity<List<SqlNode>> getSessionTree(@PathVariable String sessionKey) {Map<String, List<SqlNode>> sessions = sqlCallTreeContext.getAllSessions();List<SqlNode> sessionTree = sessions.get(sessionKey);if (sessionTree != null) {return ResponseEntity.ok(sessionTree);} else {return ResponseEntity.notFound().build();}}/*** 清理所有调用树数据*/@DeleteMapping("/clear")public ResponseEntity<Map<String, Object>> clearAllTrees() {sqlCallTreeContext.clearSessions();Map<String, Object> response = new HashMap<>();response.put("success", true);response.put("message", "All SQL trees cleared successfully");response.put("timestamp", LocalDateTime.now());return ResponseEntity.ok(response);}/*** 获取统计信息*/@GetMapping("/statistics")public ResponseEntity<Map<String, Object>> getStatistics() {SqlStatistics stats = sqlCallTreeContext.getStatistics();Map<String, Object> response = new HashMap<>();response.put("totalSqlCount", stats.getTotalSqlCount());response.put("slowSqlCount", stats.getSlowSqlCount());response.put("errorSqlCount", stats.getErrorSqlCount());response.put("averageExecutionTime", stats.getAverageExecutionTime());response.put("slowSqlThreshold", sqlCallTreeContext.getSlowSqlThreshold());response.put("traceEnabled", sqlCallTreeContext.isTraceEnabled());return ResponseEntity.ok(response);}/*** 配置追踪参数*/@PostMapping("/config")public ResponseEntity<Map<String, Object>> updateConfig(@RequestBody Map<String, Object> config) {Map<String, Object> response = new HashMap<>();if (config.containsKey("slowSqlThreshold")) {long threshold = ((Number) config.get("slowSqlThreshold")).longValue();sqlCallTreeContext.setSlowSqlThreshold(threshold);response.put("slowSqlThreshold", threshold);}if (config.containsKey("traceEnabled")) {boolean enabled = (Boolean) config.get("traceEnabled");sqlCallTreeContext.setTraceEnabled(enabled);response.put("traceEnabled", enabled);}response.put("success", true);response.put("message", "Configuration updated successfully");return ResponseEntity.ok(response);}/*** 分析慢SQL*/@GetMapping("/analysis/slow-sql")public ResponseEntity<List<SqlNode>> getSlowSqlAnalysis() {Map<String, List<SqlNode>> sessions = sqlCallTreeContext.getAllSessions();List<SqlNode> slowSqlNodes = new ArrayList<>();for (List<SqlNode> sessionNodes : sessions.values()) {collectSlowSqlNodes(sessionNodes, slowSqlNodes);}// 按执行时间降序排序slowSqlNodes.sort((a, b) -> Long.compare(b.getExecutionTime(), a.getExecutionTime()));return ResponseEntity.ok(slowSqlNodes);}/*** 导出数据*/@GetMapping("/export")public ResponseEntity<Map<String, Object>> exportData() {Map<String, Object> exportData = new HashMap<>();exportData.put("sessions", sqlCallTreeContext.getAllSessions());exportData.put("statistics", sqlCallTreeContext.getStatistics());exportData.put("exportTime", LocalDateTime.now());exportData.put("version", "1.0");return ResponseEntity.ok(exportData);}/*** 系统状态检查*/@GetMapping("/health")public ResponseEntity<Map<String, Object>> healthCheck() {Map<String, Object> health = new HashMap<>();health.put("status", "UP");health.put("traceEnabled", sqlCallTreeContext.isTraceEnabled());health.put("slowSqlThreshold", sqlCallTreeContext.getSlowSqlThreshold());health.put("timestamp", LocalDateTime.now());return ResponseEntity.ok(health);}/*** 递归收集慢SQL节点*/private void collectSlowSqlNodes(List<SqlNode> nodes, List<SqlNode> slowSqlNodes) {for (SqlNode node : nodes) {if (node.isSlowSql()) {slowSqlNodes.add(node);}if (node.getChildren() != null && !node.getChildren().isEmpty()) {collectSlowSqlNodes(node.getChildren(), slowSqlNodes);}}}
}

5. 前端可视化实现

前端使用D3.js实现交互式的SQL调用树可视化,主要包含以下功能:

// sql-tree.js - 主要的可视化逻辑
class SqlTreeVisualizer {constructor() {this.width = 1200;this.height = 800;this.margin = { top: 50, right: 150, bottom: 50, left: 150 };// 初始化SVG容器this.svg = d3.select('#tree-container').append('svg').attr('width', this.width).attr('height', this.height);this.g = this.svg.append('g').attr('transform', `translate(${this.margin.left},${this.margin.top})`);// 配置树布局this.tree = d3.tree().size([this.height - this.margin.top - this.margin.bottom, this.width - this.margin.left - this.margin.right]);// 初始化工具提示this.tooltip = d3.select('body').append('div').attr('class', 'tooltip').style('opacity', 0);}/*** 渲染SQL调用树*/render(sessions) {this.g.selectAll('*').remove();if (!sessions || Object.keys(sessions).length === 0) {this.showEmptyState();return;}// 选择第一个会话进行展示const sessionKey = Object.keys(sessions)[0];const rootNodes = sessions[sessionKey];if (rootNodes && rootNodes.length > 0) {this.renderTree(rootNodes[0]);}}/*** 渲染单个调用树*/renderTree(rootNode) {// 构建D3层次结构const root = d3.hierarchy(rootNode, d => d.children);// 计算节点位置this.tree(root);// 绘制连接线const links = this.g.selectAll('.link').data(root.links()).enter().append('path').attr('class', 'link').attr('d', d3.linkHorizontal().x(d => d.y).y(d => d.x)).style('fill', 'none').style('stroke', '#94a3b8').style('stroke-width', '2px').style('stroke-opacity', 0.6);// 绘制节点组const nodes = this.g.selectAll('.node').data(root.descendants()).enter().append('g').attr('class', 'node').attr('transform', d => `translate(${d.y},${d.x})`);// 绘制节点圆圈nodes.append('circle').attr('r', 10).style('fill', d => this.getNodeColor(d.data)).style('stroke', '#1e293b').style('stroke-width', '2px').style('cursor', 'pointer');// 添加节点文本nodes.append('text').attr('dy', '.35em').attr('x', d => d.children ? -15 : 15).style('text-anchor', d => d.children ? 'end' : 'start').style('font-size', '12px').style('font-weight', '500').style('fill', '#1e293b').text(d => this.getNodeLabel(d.data));// 添加交互事件nodes.on('mouseover', (event, d) => this.showTooltip(event, d.data)).on('mouseout', () => this.hideTooltip()).on('click', (event, d) => this.showNodeDetails(d.data));}/*** 获取节点颜色*/getNodeColor(data) {if (data.errorMessage) {return '#ef4444'; // 错误:红色}if (data.slowSql) {return '#f59e0b'; // 慢SQL:橙色}switch (data.sqlType) {case 'SELECT':return '#10b981'; // 查询:绿色case 'INSERT':return '#3b82f6'; // 插入:蓝色case 'UPDATE':return '#8b5cf6'; // 更新:紫色case 'DELETE':return '#ef4444'; // 删除:红色default:return '#6b7280'; // 默认:灰色}}/*** 获取节点标签*/getNodeLabel(data) {const time = data.executionTime || 0;return `${data.sqlType} (${time}ms)`;}/*** 显示工具提示*/showTooltip(event, data) {const tooltipContent = `<div class="font-semibold text-gray-900">${data.sqlType} 操作</div><div class="text-sm text-gray-600 mt-1"><div>执行时间: ${data.executionTime || 0}ms</div><div>影响行数: ${data.affectedRows || 0}</div><div>服务: ${data.serviceName || 'Unknown'}</div><div>方法: ${data.methodName || 'unknown'}</div>${data.errorMessage ? `<div class="text-red-600">错误: ${data.errorMessage}</div>` : ''}</div>`;this.tooltip.transition().duration(200).style('opacity', .9);this.tooltip.html(tooltipContent).style('left', (event.pageX + 10) + 'px').style('top', (event.pageY - 28) + 'px');}/*** 隐藏工具提示*/hideTooltip() {this.tooltip.transition().duration(500).style('opacity', 0);}/*** 显示空状态*/showEmptyState() {this.g.append('text').attr('x', (this.width - this.margin.left - this.margin.right) / 2).attr('y', (this.height - this.margin.top - this.margin.bottom) / 2).attr('text-anchor', 'middle').style('font-size', '18px').style('fill', '#6b7280').text('暂无SQL调用数据');}/*** 显示节点详情*/showNodeDetails(data) {// 在侧边栏显示详细信息const detailsPanel = document.getElementById('node-details');if (detailsPanel) {detailsPanel.innerHTML = `<h3 class="text-lg font-semibold mb-4">SQL详情</h3><div class="space-y-2"><div><span class="font-medium">类型:</span> ${data.sqlType}</div><div><span class="font-medium">执行时间:</span> ${data.executionTime || 0}ms</div><div><span class="font-medium">影响行数:</span> ${data.affectedRows || 0}</div><div><span class="font-medium">服务:</span> ${data.serviceName || 'Unknown'}</div><div><span class="font-medium">方法:</span> ${data.methodName || 'unknown'}</div><div><span class="font-medium">线程:</span> ${data.threadName || 'unknown'}</div>${data.sql ? `<div><span class="font-medium">SQL:</span><pre class="mt-1 p-2 bg-gray-100 rounded text-sm">${data.sql}</pre></div>` : ''}${data.parameters ? `<div><span class="font-medium">参数:</span><pre class="mt-1 p-2 bg-gray-100 rounded text-sm">${data.parameters}</pre></div>` : ''}${data.errorMessage ? `<div><span class="font-medium text-red-600">错误:</span><div class="mt-1 p-2 bg-red-50 rounded text-sm text-red-700">${data.errorMessage}</div></div>` : ''}</div>`;}}
}

核心特性

  • 🌳 树形布局:清晰展示SQL调用层次关系
  • 🎨 颜色编码:绿色(正常)、红色(慢SQL)
  • 🖱️ 交互操作:点击节点查看详情,悬停显示提示
  • 🔍 智能筛选:支持按执行时间、SQL类型等条件筛选
  • 📊 实时刷新:支持自动/手动刷新数据

快速开始

环境要求

  • Java 21+
  • Maven 3.6+
  • 现代浏览器(支持ES6+)

访问系统

启动成功后,可以通过以下地址访问:

  • 可视化界面:http://localhost:8080/index.html
  • H2数据库控制台:http://localhost:8080/h2-console
    • JDBC URL: jdbc:h2:mem:testdb
    • 用户名: sa
    • 密码: (空)

项目配置

核心依赖(pom.xml)

<dependencies><!-- Spring Boot 3.4.5 --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId><version>3.4.5</version></dependency><!-- MyBatis 3.0.3 --><dependency><groupId>org.mybatis.spring.boot</groupId><artifactId>mybatis-spring-boot-starter</artifactId><version>3.0.3</version></dependency><!-- H2 Database --><dependency><groupId>com.h2database</groupId><artifactId>h2</artifactId><scope>runtime</scope></dependency><!-- Lombok --><dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId><optional>true</optional></dependency>
</dependencies>

应用配置(application.yml)

server:port: 8080spring:application:name: springboot-sql-treedatasource:url: jdbc:h2:mem:testdbdriver-class-name: org.h2.Driverusername: sapassword: schema: classpath:schema.sqldata: classpath:data.sqlh2:console:enabled: truepath: /h2-consolemybatis:mapper-locations: classpath:mapper/*.xmltype-aliases-package: com.example.sqltree.entityconfiguration:map-underscore-to-camel-case: truelazy-loading-enabled: truecache-enabled: truelog-impl: org.apache.ibatis.logging.slf4j.Slf4jImpl

实际应用场景

开发调试场景

场景1:复杂查询性能分析

当调用 /api/demo/user/1/detail 接口时,系统会自动捕获以下SQL调用链:

UserService.getUserDetailWithOrders()
├── SELECT * FROM users WHERE id = ? (2ms)
└── SELECT * FROM orders WHERE user_id = ? (15ms)└── SELECT * FROM order_items WHERE order_id IN (...) (45ms)

通过可视化界面可以清晰看到:

  • 总执行时间:62ms
  • SQL调用深度:2层
  • 性能瓶颈:order_items查询耗时最长

场景2:慢SQL识别

系统自动标识执行时间超过阈值(默认1000ms)的SQL:

{"nodeId": "uuid-123","sql": "SELECT * FROM orders o JOIN users u ON o.user_id = u.id WHERE o.status = ?","executionTime": 1250,"slowSql": true,"serviceName": "OrderService","methodName": "getOrdersWithUserInfo"
}

数据监控

统计信息示例

{"totalSqlCount": 1247,"slowSqlCount": 23,"errorSqlCount": 5,"averageExecutionTime": 35.6,"slowSqlThreshold": 1000,"traceEnabled": true
}

慢SQL分析报告

系统提供按执行时间排序的慢SQL列表:

[{"sql": "SELECT COUNT(*) FROM orders WHERE created_at BETWEEN ? AND ?","executionTime": 2150,"serviceName": "ReportService","methodName": "generateDailyReport","affectedRows": 1},{"sql": "UPDATE users SET last_login = ? WHERE id IN (...)","executionTime": 1890,"serviceName": "UserService","methodName": "batchUpdateLastLogin","affectedRows": 156}
]

技术特点

零侵入设计

  • 基于MyBatis拦截器实现,无需修改现有业务代码
  • 通过注解和配置即可启用SQL监控功能
  • 支持动态开启/关闭追踪功能

线程安全

  • 使用ThreadLocal确保多线程环境下的数据隔离
  • ConcurrentHashMap保证全局会话存储的线程安全
  • 无锁设计,避免性能瓶颈

内存友好

  • 会话级别的数据存储,避免全局数据累积
  • 支持手动清理和自动过期机制
  • 轻量级数据结构,内存占用小

总结

这个项目展示了如何结合Spring Boot生态和前端技术,构建一个实用的SQL监控工具,为日常开发和性能优化提供有力支持。

https://github.com/yuboon/java-examples/tree/master/springboot-sql-tree

http://www.dtcms.com/a/338298.html

相关文章:

  • SpringBoot3整合OpenAPI3(Swagger3)完整指南
  • 王树森深度强化学习DRL(三)围棋AlphaGo+蒙特卡洛
  • Laravel中如何使用php-casbin
  • MP4 文件格式验证工具
  • onRequestHide at ORIGIN_CLIENT reason HIDE_SOFT_INPUT fromUser false
  • kafka的pull的依据
  • python 数据拟合(线性拟合、多项式回归)
  • 【2025CVPR-目标检测方向】学习稳健且硬件自适应的对象检测器,以应对边缘设备的延迟攻击
  • 【K8s】K8s 服务优雅下线调试记录
  • C# NX二次开发:字符串控件StringBlock讲解
  • 【MongoDB】常见八股合集,mongodb的特性,索引使用,优化,事务,ACID,聚合查询,数据复制机制,理解其基于raft的选举机制
  • 虚拟货币(BTC)走势分析指标体系
  • JMeter与大模型融合应用之构建AI智能体:评审性能测试脚本
  • 浅入浅出常见敏感数据处理的加密算法
  • 如何在 Ubuntu 24.04 或 22.04 LTS 上安装 PowerShell
  • SHA-256 详解
  • UE5 批量编译蓝图技巧
  • Linux Miniconda安装教程与conda常用指令介绍
  • 区块链数字存证应用
  • 健身房预约系统SSM+Mybatis实现(四、登录页面+JWT+注销)
  • 【前端智能化】AG-UI实践及原理浅析
  • 决策树的笔记
  • steal tsoding‘s pastebeam code as go server
  • 芋道审批流配置流程表单超详细介绍
  • 15.web api 6
  • Unity 中控开发 多路串口服务器(一)
  • 【Goland】:数组与切片
  • 【25-cv-09352】Maradona 品牌维权,从球衣到周边全品类侵权高危
  • Jupyter 中实现交互式图表:ipywidgets 从入门到部署
  • 【数据集】全球大气监测计划(GAW)简介