当前位置: 首页 > news >正文

Python机器学习与深度学习;Transformer模型/注意力机制/目标检测/语义分割/图神经网络/强化学习/生成式模型/自监督学习/物理信息神经网络等

大型语言模型不仅在自然语言处理领域取得突破,也日益成为助力Python编程、加速机器学习与深度学习项目落地的重要工具。与此同时,以PyTorch为代表的深度学习框架,凭借其灵活、高效、易扩展的特性,持续受到科研人员和工程师的青睐。

最新AI-Python机器学习与深度学习实践技术应用

帮助科研工作者、工程师及AI从业者全面掌握前沿大语言模型的能力,深入理解并实践Python编程与深度学习方法,融合最新技术动态与实战经验,旨在系统提升以下能力:(1)掌握ChatGPT、DeepSeek等大语言模型在代码生成、模型调试、实验设计、论文撰写等方面的实际应用技巧;(2)深入理解深度学习与经典机器学习算法的关联与差异,掌握其理论基础;(3)熟练运用PyTorch实现各类深度学习模型,包括迁移学习、循环神经网络(RNN)、长短时记忆网络(LSTM)、时间卷积网络(TCN)、自编码器、生成对抗网络(GAN)、YOLO目标检测等前沿技术。

第一章 ChatGPT与DeepSeek等大语言模型助力AI编程必备技能

1、大语言模型提示词(Prompt)撰写技巧(为ChatGPT设定身份、明确任务内容、提供任务相关的背景、举一个参考范例、指定返回的答案格式等)

2、Cursor与Trae等AI编程开发环境简介与演示

3、上传本地数据(Excel/CSV表格、txt文本、PDF、图片等)

4、实现描述性统计分析(数据的频数分析:统计直方图;数据的集中趋势分析:数据的相关分析)

5、实现数据预处理(数据标准化与归一化、数据异常值与缺失值处理、数据离散化及编码处理、手动生成新特征)代码自动生成运行

第二章 Python基础知识

1、Python环境搭建(Python软件下载、安装与版本选择;PyCharm下载、安装;Python之Hello World;第三方模块的安装与使用;Python 2.x与Python 3.x对比)

2、Python基本语法(Python变量命名规则;Python基本数学运算;Python常用变量类型的定义与操作;Python程序注释)

3、Python流程控制(条件判断;for循环;while循环;break和continue关键字;嵌套循环与可变循环)

4、Python函数与对象(函数的定义与调用;函数的参数传递与返回值;变量作用域与全局变量;对象的创建与使用)

5、Matplotlib的安装与图形绘制(设置散点、线条、坐标轴、图例、注解等属性;绘制多图;图的嵌套)

6、科学计算模块库(Numpy的安装;ndarray类型属性与数组的创建;数组索引与切片;Numpy常用函数简介与使用;Pandas常用函数简介与使用)

第三章 PyTorch简介与环境搭建

1、深度学习框架概述(PyTorch、Tensorflow、Keras等)

2、PyTorch简介(PyTorch的版本、动态计算图与静态计算图、PyTorch的优点)

3、PyTorch的安装与环境配置(Pip vs. Conda包管理方式、验证是否安装成功、CPU版与GPU版的安装方法)

第四章 PyTorch编程入门与进阶

1、张量(Tensor)的定义,以及与标量、向量、矩阵的区别与联系)

2、张量(Tensor)的常用属性与方法(dtype、device、layout、requires_grad、cuda等)

3、张量(Tensor)的创建(直接创建、从numpy创建、依据数值创建、依据概率分布创建)

4、张量(Tensor)的运算(加法、减法、矩阵乘法、哈达玛积(element wise)、除法、幂、开方、指数与对数、近似、裁剪)

5、张量(Tensor)的索引与切片

6、PyTorch的自动求导(Autograd)机制与计算图的理解

7、PyTorch常用工具包及API简介(torchvision(transforms、datasets、model)、torch.nn、torch.optim、torch.utils(Dataset、DataLoader))

第五章 统计分析与可视化

1、统计数据的描述与可视化(数据的描述性统计:均值、中位数、众数、方差、标准差、极差、四分位数间距等;条形图、直方图、散点图、箱线图等)

2、概率分布与统计推断(离散概率分布:二项分布、泊松分布;连续概率分布:正态分布、均匀分布、指数分布;点估计与区间估计;最大似然估计与贝叶斯估计;假设检验:t检验、卡方检验、F检验;P值与显著性水平等)

3、回归分析(多元线性回归模型;最小二乘法估计;变量选择与模型优化;多重共线性与解决方法;Ridge回归;LASSO回归;ElasticNet回归等)

4、案例:利用ChatGPT和DeepSeek实现统计分析与可视化代码的自动生成与运行

第六章 前向型神经网络

1、BP神经网络的基本原理(人工神经网络的分类有哪些?有导师学习和无导师学习的区别是什么?BP神经网络的拓扑结构和训练过程是怎样的?什么是梯度下降法?BP神经网络建模的本质是什么?)

2、BP神经网络的Python代码实现(怎样划分训练集和测试集?为什么需要归一化?归一化是必须的吗?什么是梯度爆炸与梯度消失?)

3、PyTorch代码实现神经网络的基本流程(Data、Model、Loss、Gradient)及训练过程(Forward、Backward、Update)

4、案例:Linear模型、Logistic模型、Softmax函数输出、BP神经网络

5、值得研究的若干问题(隐含层神经元个数、学习率、初始权值和阈值等如何设置?什么是交叉验证?过拟合(Overfitting)与欠拟合(Underfitting)、泛化性能评价指标的设计、样本不平衡问题、模型评价与模型选择等)

6、利用ChatGPT和DeepSeek实现BP神经网络模型的代码自动生成与运行

第七章 决策树、随机森林、XGBoost与LightGBM

1、决策树的工作原理(微软小冰读心术的启示;什么是信息熵和信息增益?ID3算法和C4.5算法的区别与联系);决策树除了建模型之外,还可以帮我们做什么事情?

2、随机森林的工作原理(为什么需要随机森林算法?广义与狭义意义下的“随机森林”分别指的是什么?“随机”体现在哪些地方?随机森林的本质是什么?怎样可视化、解读随机森林的结果?)

3、Bagging与Boosting的区别与联系

4、AdaBoost vs. Gradient Boosting的工作原理

5、常用的GBDT算法框架(XGBoost、LightGBM)

6、决策树、随机森林、XGBoost、LightGBM中的ChatGPT提示词库讲解

7、案例:利用ChatGPT和DeepSeek实现决策树、随机森林、XGBoost、LightGBM模型的代码自动生成与运行

第八章 变量降维与特征选择

1、主成分分析(PCA)的基本原理

2、偏最小二乘(PLS)的基本原理

3、常见的特征选择方法(优化搜索、Filter和Wrapper等;前向与后向选择法;区间法;无信息变量消除法;正则稀疏优化方法等)

4、遗传算法(Genetic Algorithm, GA)的基本原理(以遗传算法为代表的群优化算法的基本思想是什么?选择、交叉、变异三个算子的作用分别是什么?)

5、SHAP法解释特征重要性与可视化(Shapley值的定义与计算方法、SHAP值的可视化与特征重要性解释)

6、案例:利用ChatGPT和DeepSeek实现变量降维与特征选择的代码自动生成与运行

第九章 卷积神经网络

1、深度学习简介(深度学习大事记:Model + Big Data + GPU + AlphaGo)

2、深度学习与传统机器学习的区别与联系(神经网络的隐含层数越多越好吗?深度学习与传统机器学习的本质区别是什么?)

2、卷积神经网络的基本原理(什么是卷积核、池化核?CNN的典型拓扑结构是怎样的?CNN的权值共享机制是什么?CNN提取的特征是怎样的?)

3、卷积神经网络的进化史:LeNet、AlexNet、Vgg-16/19、GoogLeNet、ResNet等经典深度神经网络的区别与联系

4、利用PyTorch构建卷积神经网络(Convolution层、Batch Normalization层、Pooling层、Dropout层、Flatten层等)

5、卷积神经网络调参技巧(卷积核尺寸、卷积核个数、移动步长、补零操作、池化核尺寸等参数与特征图的维度,以及模型参数量之间的关系是怎样的?)

6、案例:利用ChatGPT和DeepSeek实现卷积神经网络模型的代码自动生成与运行

(1)CNN预训练模型实现物体识别(2)利用卷积神经网络抽取抽象特征(3)自定义卷积神经网络拓扑结构

第十章 迁移学习

1、迁移学习算法的基本原理(为什么需要迁移学习?为什么可以迁移学习?迁移学习的基本思想是什么?)

2、基于深度神经网络模型的迁移学习算法

3、案例:利用ChatGPT和DeepSeek实现迁移学习的代码自动生成与运行

第十一章 生成式对抗网络

1、生成式对抗网络GAN(什么是对抗生成网络?为什么需要对抗生成网络?对抗生成网络可以帮我们做什么?GAN给我们带来的启示)

2、GAN的基本原理及GAN进化史

3、案例:利用ChatGPT和DeepSeek实现GAN的代码自动生成与运行

第十二章 RNN与LSTM

1、循环神经网络RNN的基本工作原理

2、长短时记忆网络LSTM的基本工作原理

3、案例:利用ChatGPT和DeepSeek实现LSTM神经网络模型的代码自动生成与运行

第十三章 时间卷积网络

1、时间卷积网络(TCN)的基本原理

2、TCN与1D CNN、LSTM的区别与联系

3、案例:利用ChatGPT和DeepSeek实现TCN模型的代码自动生成与运行

 1)时间序列预测:新冠肺炎疫情预测 2)序列-序列分类:人体动作识别

第十四章 目标检测

1、什么是目标检测?目标检测与目标识别的区别与联系

2、YOLO模型的工作原理,YOLO模型与传统目标检测算法的区别

3、案例:利用ChatGPT和DeepSeek实现YOLO的代码自动生成与运行

(1)利用预训练好的YOLO模型实现目标检测(图像检测、视频检测、摄像头实时检测)(2)数据标注演示(LabelImage使用方法介绍)(3)训练自己的目标检测数据集

第十五章 自编码器

1、什么是自编码器(Auto-Encoder, AE)?

2、经典的几种自编码器模型原理介绍(AE、Denoising AE, Masked AE)

3、案例:利用ChatGPT和DeepSeek实现自编码器的代码自动生成与运行

(1)基于自编码器的噪声去除(2)基于自编码器的手写数字特征提取与重构(3)基于掩码自编码器的缺失图像重构

第十六章 U-Net语义分割

1、语义分割(Semantic Segmentation)简介

2、U-Net模型的基本原理

3、案例:利用ChatGPT和DeepSeek实现U-Net语义分割模型的代码自动生成与运行


最新Transformer模型及深度学习前沿技术应用

随着卷积神经网络(CNN)等深度学习技术的飞速发展,人工智能迎来了第三次发展浪潮,AI技术在各行各业中的应用日益广泛。

注意力机制:理解其在现代深度学习中的关键作用

Transformer模型:深入剖析BERT、GPT(1/2/3/3.5/4)、DETR、ViT、Swin Transformer等经典模型的原理与应用

生成式模型:探索变分自编码器VAE、生成式对抗网络GAN、扩散模型(Diffusion Model)等技术

目标检测算法:R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SSD等算法的实现与优化

图神经网络:深入研究GCN、GAT、GIN等图神经网络模型的应用

强化学习:解析Q-Learning、DQN等经典强化学习算法

深度学习模型可解释性与可视化:CAM、Grad-CAM、LIME、t-SNE等技术,提升模型的可理解性 

该内容为进阶操作,适合已经掌握卷积神经网络(CNN)、循环神经网络(RNN)等基础知识的人员,并要求具备一定的Python编程基础,熟悉numpy、pandas、matplotlib、scikit-learn、pytorch等常用第三方库。

第一章 注意力(Attention)机制

1、注意力机制的背景和动机(为什么需要注意力机制?注意力机制的起源和发展里程碑)

2、注意力机制的基本原理(什么是注意力机制?注意力机制的数学表达与基本公式、用机器翻译任务带你了解Attention机制、如何计算注意力权重?)

3、注意力机制的主要类型:键值对注意力机制(Key-Value Attention)、自注意力(Self-Attention)与多头注意力(Multi-Head Attention)、Soft Attention 与 Hard Attention、全局(Global)与局部(Local)注意力

4、注意力机制的优化与变体:稀疏注意力(Sparse Attention)、自适应注意力(Adaptive Attention)、动态注意力机制(Dynamic Attention)、跨模态注意力机制(Cross-Modal Attention)

5、注意力机制的可解释性与可视化技术:注意力权重的可视化(权重热图)

第二章 自然语言处理(NLP)领域的Transformer模型

1、Transformer模型的提出背景(从RNN、LSTM到注意力机制的演进、Transformer模型的诞生背景及其在自然语言处理和计算视觉中的重要性)

2、Transformer模型的进化之路(RCTM→RNN Encoder-Decoder→Bahdanau Attention→Luong Attention→Self Attention)

3、Transformer模型拓扑结构(编码器、解码器、多头自注意力机制、前馈神经网络、层归一化和残差连接等)

4、Transformer模型工作原理(输入数据的Embedding、位置编码、层规范化、带掩码的自注意力层、编码器到解码器的多头注意力层、编码器的完整工作流程、解码器的完整工作流程、Transformer模型的损失函数)

5、BERT模型的工作原理(输入表示、多层Transformer编码器、掩码语言模型MLM、下一句预测NSP)

6、GPT系列模型(GPT-1 / GPT-2 / GPT-3 / GPT-3.5 / GPT-4)的工作原理(单向语言模型、预训练、自回归生成、Zero-shot Learning、上下文学习、RLHF人类反馈强化学习、多模态架构)

第三章 计算视觉(CV)领域的Transformer模型

1、ViT模型(提出的背景、基本架构、与传统CNN的比较、输入图像的分块处理、位置编码、Transformer编码器、分类头、ViT模型的训练与优化、ViT模型的Python代码实现)

2、Swin Transformer模型(提出的背景、基本架构、与ViT模型的比较、分层架构、窗口机制、位置编码、Transformer编码器、模型的训练与优化、模型的Python代码实现)

3、DETR模型(提出的背景、基本架构、与RCNN、YOLO系列模型的比较、双向匹配损失与匈牙利匹配算法、匹配损失与框架损失、模型的训练与优化、模型的Python代码实现)

第四章 时间序列建模与预测的大语言模型

1、时间序列建模的大语言模型技术细节(基于Transformer的时间序列预测原理、自注意力机制、编码器-解码器结构、位置编码)

2、时间序列建模的大语言模型训练

3、Time-LLM模型详解(拓扑结构简介、重新编程时间序列输入、Prompt-as-Prefix (PaP)等)

4、基于TimeGPT的时间序列预测(TimeGPT工作原理详解、TimeGPT库的安装与使用)

第五章 目标检测算法

1、目标检测任务与图像分类识别任务的区别与联系

2、两阶段(Two-stage)目标检测算法:R-CNN、Fast R-CNN、Faster R-CNN(RCNN的工作原理、Fast R-CNN和Faster R-CNN的改进之处 )

3、一阶段(One-stage)目标检测算法:YOLO模型、SDD模型(拓扑结构及工作原理)

第六章 目标检测的大语言模型

1、基于大语言模型的目标检测的工作原理(输入图像的特征提取、文本嵌入的生成、视觉和语言特征的融合、目标检测与输出)

2、目标检测领域的大语言模型概述(Pix2Seq、Grounding DINO、Lenna等)

第七章 语义分割的大语言模型

1、基于大语言模型的语义分割的工作原理(图像特征提取、文本嵌入生成、跨模态融合、分割预测)

2、语义分割领域的大语言模型概述(ProLab、Segment Anything Model、CLIPSeg、Segment Everything Everywhere Model等)

第八章 LLaVA多模态大语言模型

1、LLaVA的核心技术与工作原理(模型拓扑结构讲解)

2、LLaVA与其他多模态模型的区别(LLaVA模型的优势有哪些?)

3、LLaVA的架构与训练(LLaVA的多模态输入处理与特征表示、视觉编码器与语言模型的结合、LLaVA的训练数据与预训练过程)

4、LLaVA的典型应用场景(图像问答、图像生成与描述等)

第九章 物理信息神经网络(PINN)

1、物理信息神经网络的背景(物理信息神经网络(PINNs)的概念及其在科学计算中的重要性、传统数值模拟方法与PINNs的比较)

2、PINN工作原理:物理定律与方程的数学表达、如何将物理定律嵌入到神经网络模型中?PINN的架构(输入层、隐含层、输出层的设计)、物理约束的形式化(如何将边界条件等物理知识融入网络?)损失函数的设计(数据驱动与物理驱动的损失项)

第十章 生成式模型

1、变分自编码器VAE(自编码器的基本结构与工作原理、降噪自编码器、掩码自编码器、变分推断的基本概念及其与传统贝叶斯推断的区别、VAE的编码器和解码器结构及工作原理)

2、生成式对抗网络GAN(GAN提出的背景和动机、GAN的拓扑结构和工作原理、生成器与判别器的角色、GAN的目标函数、对抗样本的构造方法)

3、扩散模型Diffusion Model(扩散模型的核心概念?如何使用随机过程模拟数据生成?扩散模型的工作原理)

4、跨模态图像生成DALL.E(什么是跨模态学习?DALL.E模型的基本架构、模型训练过程)

第十一章 自监督学习模型

1、自监督学习的基本概念(自监督学习的发展背景、自监督学习定义、与有监督学习和无监督学习的区别)

2、经典的自监督学习模型的基本原理、模型架构及训练过程(对比学习: SimCLR、MoCo;生成式方法:AutoEncoder、GPT;预文本任务:BERT掩码语言模型)

3、自监督学习模型的Python代码实现

第十二章 图神经网络

1、图神经网络的背景和基础知识(什么是图神经网络?图神经网络的发展历程?为什么需要图神经网络?)

2、图的基本概念和表示(图的基本组成:节点、边、属性;图的表示方法:邻接矩阵;图的类型:无向图、有向图、加权图)

3、图神经网络的工作原理(节点嵌入和特征传播、聚合邻居信息的方法、图神经网络的层次结构)

4、图卷积网络(GCN)的工作原理

5、图神经网络的变种和扩展:图注意力网络(GAT)、图同构网络(GIN)、图自编码器、图生成网络

第十三章 强化学习

1、强化学习的基本概念和背景(什么是强化学习?强化学习与其他机器学习方法的区别?强化学习的应用领域有哪些?

2、Q-Learning(马尔可夫决策过程、Q-Learning的核心概念、什么是Q函数?Q-Learning的基本更新规则)

3、深度Q网络(DQN)(为什么传统Q-Learning在高维或连续的状态空间中不再适用?如何使用神经网络代替Q表来估计Q值?目标网络的作用及如何提高DQN的稳定性?)

第十四章 深度学习模型可解释性与可视化方法

1、什么是模型可解释性?为什么需要对深度学习模型进行解释?

2、可视化方法有哪些(特征图可视化、卷积核可视化、类别激活可视化等)?

3、类激活映射CAM(Class Activation Mapping)、梯度类激活映射GRAD-CAM、局部可解释模型-敏感LIME(Local Interpretable Model-agnostic Explanation)、等方法原理

4、t-SNE的基本概念及使用t-SNE可视化深度学习模型的高维特征

第十五章 神经架构搜索(Neural Architecture Search, NAS)

1、NAS的背景和动机(传统的神经网络设计依赖经验和直觉,既耗时又可能达不到最优效果。通过自动搜索,可以发现传统方法难以设计的创新和高效架构。)

2、NAS的基本流程:搜索空间定义(确定搜索的网络架构的元素,如层数、类型的层、激活函数等。)、搜索策略(随机搜索、贝叶斯优化、进化算法、强化学习等)、性能评估

3、NAS的关键技术:进化算法(通过模拟生物进化过程,如变异、交叉和选择,来迭代改进网络架构)、强化学习(使用策略网络来生成架构,通过奖励信号来优化策略网络)、贝叶斯优化(利用贝叶斯方法对搜索空间进行高效的全局搜索,平衡探索和利用)


★ 点 击 下 方 关 注,获取海量教程和资源!

↓↓↓

http://www.dtcms.com/a/331214.html

相关文章:

  • 基于51单片机倒计时器秒表定时器数码管显示设计
  • vue+后端
  • 微服务、分布式概念-以及集群部署 vs 分布式部署
  • 容器运行时支持GPU,并使用1panel安装ollama
  • 将 pdf 转为高清 jpg
  • 数巅中标中建科技AI知识库项目,开启建筑业数智化新篇章
  • CSS aspect-ratio 属性
  • Multimodal RAG Enhanced Visual Description
  • Linux 对 RPM 包的管理
  • 19 ABP Framework 本地化系统
  • hashmap和concurrentHashmap是否允许null值和null健
  • PiscCode使用光流法计算漂浮物位移速度
  • 把 AI 推理塞进「 8 位 MCU 」——0.5 KB RAM 跑通关键词唤醒的魔幻之旅
  • 监控插件SkyWalking(一)原理
  • 嵌入式学习的第四十九天-时钟+EPIT+GPT定时器
  • 无人机探测器技术解析
  • 阿里巴巴 Qwen-Image:免费开源,还要挑战 GPT-4.1 和 Midjourney?
  • 恢复GPT-4o,增加付费配额:OpenAI的“补救措施”如何重塑用户金字塔
  • OpenCV ------图像基础处理(一)
  • 【OpenCV】Mat详解
  • 论,物联网日志系统架构如何设计?
  • AI增强SEO关键词表现
  • Postman 平替 技术解析:架构优势与实战指南
  • 审批流程系统设计与实现:状态驱动、灵活扩展的企业级解决方案
  • Java研学-RabbitMQ(八)
  • Rabbitmq+STS+discovery_k8s +localpv部署排坑详解
  • 队列的使用以及泛型思考[二叉树的层序遍历]
  • 【P27 4-8】OpenCV Python——Mat类、深拷贝(clone、copyTo、copy)、浅拷贝,原理讲解与示例代码
  • Horse3D游戏引擎研发笔记(五):在QtOpenGL环境下,仿three.js的BufferGeometry管理VAO和EBO绘制四边形
  • 算法训练营day51 图论② 岛屿数量深搜、广搜、最大面积