ECML PKDD 2025 | 时间序列(Time Series)论文总结
ECMLP KDD是CCF B类会议。ECML PKDD2025将在2025年9月15号到19号在加葡萄牙波尔图(
Porto, Portugal)举行,本文总结了ECMLPKDD2025有关时间序列(Time Series)相关文章,共计14篇,其中1-11为Research Track,12-14为ADS Track。
时间序列Topic:预测,分类,异常检测,生成,可解释性等。如有疏漏,欢迎补充!
1. An Empirical Evaluation of Foundation Models for Multivariate Time Series Classification 2. Bridging Neural Networks and Dynamic Time Warping for Adaptive Time Series Classification 3. Cross-Domain Conditional Diffusion Models for Time Series Imputation 4. Federated Time Series Generation on Feature and Temporally Misaligned Data 5. G-GLformer: Transformer with GRU Embedding and Global-Local Attention for Multivariate Time Series Forecasting 6. MASCOTS: Model-Agnostic Symbolic COunterfactual explanations for Time Series 7. MotiPlus and MotiSet: Discovering the Best Set of Motiflets in Time Series 8. Multivariate Time Series Anomaly Prediction Based on Forecasting and Reconstruction Using Transformer with Temporal and Feature-wise Attention 9. RandomAD: A Random Kernel-based Anomaly Detector for Time Series 10. Right on Time: Revising Time Series Models by Constraining their Explanations 11. TSHAP: Fast and Exact SHAP for Explaining Time Series Classification and Regression 12. Forecasting Irregularly Sampled Time Series with Transformer Encoders 13. InterDiff: Synthesizing Financial Time Series with Inter-Stock Correlations via Classifier-Free Guided Diffusion 14. Ordinal Aligned Domain Generalization for Sensor-based Time Series Regression |
---|
🌟【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅
1 An Empirical Evaluation of Foundation Models for Multivariate Time Series Classification
作者:Pinar Sungu Isiacik (University College Dublin)*; Thach Le Nguyen (University College Dublin); Timilehin Aderinola (University College Dublin); Georgiana Ifrim (University College Dublin)
关键词:分类,基础模型
2 Bridging Neural Networks and Dynamic Time Warping for Adaptive Time Series Classification
作者:Jintao Qu (University of Southern California)*; Zichong Wang (Florida International University); Chenhao Wu ( University of Southern California); Wenbin Zhang ( Florida International University); Dongmei Li (Beijing Forestry University)
关键词:分类,自适应
3 Cross-Domain Conditional Diffusion Models for Time Series Imputation
代码:https://github.com/kexin-kxzhang/CD2-TSI
作者:Kexin Zhang (Northwestern University)*; Baoyu Jing (University of Illinois Urbana-Champaign); Selcuk Candan (Arizona State University); Dawei Zhou (Virginia Tech); Qingsong Wen (Squirrel Ai Learning); Han Liu (Northwestern University); Kaize Ding (Northwestern University)
关键词:插补,域适应,扩散模型
4 Federated Time Series Generation on Feature and Temporally Misaligned Data
作者:Zhi Wen Soi (University of Bern); Chenrui Fan (University of Bern); Aditya Shankar (TU Delft); Abel Malan (University of Neuchatel); Lydia Chen (University of Neuchatel)*
关键词:生成,联邦
5 G-GLformer: Transformer with GRU Embedding and Global-Local Attention for Multivariate Time Series Forecasting
作者:Wenjun Yu (Shanghai University of International Business and Economics)*; Jiyanglin Li (Guizhou Key Laboratory of Big Data Statistical Analysis; Guizhou University of Finance and Economics); Wentao Gao (University of South Australia); Niangxi Zhuang (Guangzhou Nanfang College); Wen Li (Shanghai University of International Business and Economics); Shouguo Du (Shanghai Municipal Big Data Center)
关键词:预测,多元时间序列
6 MASCOTS: Model-Agnostic Symbolic COunterfactual explanations for Time Series
作者:Dawid P_udowski (Warsaw University of Technology)*; Francesco Spinnato (University of Pisa); Piotr Wilczy_ski (ETH Zürich); Krzysztof Kotowski (KP Labs); Evridiki Ntagiou (European Space Operations Centre); Riccardo Guidotti (University of Pisa); Przemys_aw Biecek (Warsaw University of Technology)
关键词:反事实解释,可解释性
7 MotiPlus and MotiSet: Discovering the Best Set of Motiflets in Time Series
作者:Len Feremans (Universiteit Antwerpen)*; Patrick Schäfer (Humboldt-University at Berlin); Wannes Meert (KU Leuven)
关键词:模式发现
8 Multivariate Time Series Anomaly Prediction Based on Forecasting and Reconstruction Using Transformer with Temporal and Feature-wise Attention
作者:Chihiro Maru (Chuo University)*; Masato Oguchi (Ochanomizu University); Ichiro Kobayashi (Ochanomizu University)
关键词:异常预测,多变量时间序列预测
9 RandomAD: A Random Kernel-based Anomaly Detector for Time Series
作者:Wenjie Xi (George Mason University)*; Jessica Lin (George Mason University)
关键词:异常检测,卷积
10 Right on Time: Revising Time Series Models by Constraining their Explanations
作者:Maurice Kraus (TU-Darmstadt)*; David Steinmann (TU-Darmstadt); Antonia Wüst (TU-Darmstadt); Andre Kokozinski (TU-Darmstadt); Kristian Kersting (TU-Darmstadt)
关键词:时频交互,“聪明汉斯” 现象
11 TSHAP: Fast and Exact SHAP for Explaining Time Series Classification and Regression
作者:Thach Le Nguyen (University College Dublin)*; Georgiana Ifrim (University College Dublin)
关键词:可解释性,评测
12 Forecasting Irregularly Sampled Time Series with Transformer Encoders
代码:https://github.com/softlab-unimore/ISTF
作者:Riccardo Benassi (University of Modena and Reggio Emilia); Francesco Del Buono (University of Modena and Reggio Emilia); Giacomo Guiduzzi ( University of Modena and Reggio Emilia); Francesco Guerra (University of Modena e Reggio Emilia)*
关键词:不规则时序预测
13 InterDiff: Synthesizing Financial Time Series with Inter-Stock Correlations via Classifier-Free Guided Diffusion
作者:Hou-Wan Long (The Chinese University of Hong Kong)*; Zoufei Tang (Super Quantum Capital Management); Jianhui Zhang (Super Quantum Capital Management); Zhuoyang Zhan (Super Quantum Capital Management); Tao Lu (Southern University of Science and Technology); Xiaoquan Zhang (Tsinghua University)
关键词:股票预测,数据增强,扩散模型
14 Ordinal Aligned Domain Generalization for Sensor-based Time Series Regression
代码:https://github.com/yshi22/OATSDG
作者:Yunchuan Shi (The University of Sydney)*; Wei Li (The University of Sydney); Albert Zomaya (The University of Sydney)
关键词:域泛化,时间序列回归,序数对齐,标签空间移位。
相关链接
ert Zomaya (The University of Sydney)
关键词:域泛化,时间序列回归,序数对齐,标签空间移位。
[外链图片转存中…(img-nHzD1kna-1754715238301)]
相关链接
ECML PKDD 2025 preprint:https://ecmlpkdd.org/preprints/2025/
🌟【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅