PiscTrace的开发者版
基于 PiscTrace 架构的视图处理的纯开发板,支持静态图片、实时视频流、摄像头视频流和网络视频流的处理。与 PiscTrace 应用版相比,开发者版通过直接的代码开发,提供了更高的灵活性和可定制性,适用于需要深度定制和复杂处理的应用场景。
1. 边缘检测 (Canny Edge Detection)
import cv2
class EdgeDetection:
def __init__(self):
pass
def do(self, frame, device):
# 将图像转换为灰度图
gray_image = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# 应用 Canny 边缘检测
edges = cv2.Canny(gray_image, 100, 200)
return edges
2. 图像模糊 (Gaussian Blur)
图像模糊常用于去噪或柔化图像。高斯模糊是常见的一种模糊处理方法,可以通过 cv2.GaussianBlur
实现。
import cv2
class BlurEffect:
def __init__(self):
pass
def do(self, frame, device):
# 使用高斯模糊
blurred_image = cv2.GaussianBlur(frame, (15, 15), 0)
return blurred_image
3.轮廓检测 (Contours Detection)
import cv2
import numpy as np
class ContourDetection:
def __init__(self):
pass
def do(self, frame, device):
# 转为灰度图像
gray_image = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# 应用 Canny 边缘检测
edges = cv2.Canny(gray_image, 100, 200)
# 查找轮廓
contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 绘制轮廓
cv2.drawContours(frame, contours, -1, (0, 255, 0), 2)
return frame
4. 直方图均衡 (Histogram Equalization)
import cv2
class HistogramEqualization:
def __init__(self):
pass
def do(self, frame, device):
# 将图像转换为灰度图
gray_image = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# 直方图均衡化
equalized_image = cv2.equalizeHist(gray_image)
return equalized_image
5. 图像腐蚀和膨胀 (Erosion and Dilation)
import cv2
import numpy as np
class ErosionAndDilation:
def __init__(self):
pass
def do(self, frame, device):
# 创建一个内核
kernel = np.ones((5, 5), np.uint8)
# 腐蚀操作
eroded_image = cv2.erode(frame, kernel, iterations=1)
# 膨胀操作
dilated_image = cv2.dilate(frame, kernel, iterations=1)
return dilated_image
6. 图像梯度 (Image Gradient)
import cv2
import numpy as np
class ImageGradient:
def __init__(self):
pass
def do(self, frame, device):
# 转为灰度图像
gray_image = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# 计算 Sobel 梯度
grad_x = cv2.Sobel(gray_image, cv2.CV_64F, 1, 0, ksize=3)
grad_y = cv2.Sobel(gray_image, cv2.CV_64F, 0, 1, ksize=3)
# 计算梯度的幅度
gradient_magnitude = cv2.magnitude(grad_x, grad_y)
# 转换为可显示的类型
gradient_magnitude = np.uint8(np.absolute(gradient_magnitude))
return gradient_magnitude