当前位置: 首页 > news >正文

基于PyTorch利用CNN实现MNIST的手写数字识别


GitHub地址:
https://github.com/gao7025/pytorch_cnn_mnist.git

1.定义模型、损失函数、优化器
  • 定义一个卷积神经网络的网络结构,并设置一个优化器(optimizer)和一个损失准则(losscriterion)。创建一个随机梯度下降(stochasticgradientdescent)优化器
# 仅定义模型
class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.conv1 = nn.Conv2d(1, 16, kernel_size=4)self.conv2 = nn.Conv2d(16, 32, kernel_size=4)self.fc1 = nn.Linear(32 * 4 * 4, 32)self.fc2 = nn.Linear(32, 10)def forward(self, x):x = f.relu(self.conv1(x))x = f.max_pool2d(x, 2)x = f.relu(self.conv2(x))x = f.max_pool2d(x, 2)x = x.view(-1, 32 * 4 * 4)x = f.relu(self.fc1(x))x = self.fc2(x)return x
# 定义模型、损失函数、优化器
from model_class import Net
model = Net()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
2.加载已有或下载mnist数据集
# 数据加载与预处理
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.1307,), (0.3081,))  # MNIST数据集的均值和标准差
])train_dataset = datasets.MNIST(root='mnist_data', train=True, download=False, transform=transform)
test_dataset = datasets.MNIST(root='mnist_data', train=False, download=False, transform=transform)train_loader = DataLoader(train_dataset, batch_size=512, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=512)
3.模型训练
# 模型训练
def train(model, train_loader, criterion, optimizer, epoch, train_losses):model.train()train_loss = 0for batch_idx, (data, target) in enumerate(train_loader):optimizer.zero_grad()output = model(data)loss = criterion(output, target)loss.backward()optimizer.step()train_loss += loss.item()if batch_idx % 100 == 0:print(f'Epoch: {epoch + 1}, Batch: {batch_idx}, Loss: {loss.item():.4f}')avg_train_loss = train_loss / len(train_loader)train_losses.append(avg_train_loss)return avg_train_loss
4.模型的验证与测试
# 模型验证
def evaluate(model, test_loader, criterion, test_losses, accuracies):model.eval()test_loss = 0correct = 0# 禁用梯度计算区域with torch.no_grad():for data, target in test_loader:output = model(data)test_loss += criterion(output, target).item()pred = output.argmax(dim=1, keepdim=True)correct += pred.eq(target.view_as(pred)).sum().item()avg_test_loss = test_loss / len(test_loader)accuracy = 100. * correct / len(test_loader.dataset)test_losses.append(avg_test_loss)accuracies.append(accuracy)print(f'\nTest set: Average loss: {avg_test_loss:.4f}, 'f'Accuracy: {correct}/{len(test_loader.dataset)} ({accuracy:.2f}%)\n')return avg_test_loss, accuracy
5.绘制训练与测试的loss曲线和acc曲线并调优
def plot_loss_acc(train_losses, test_losses, accuracies):"""针对训练过程绘制loss曲线和acc曲线Parameters----------train_losses : list_liketrain loss list。test_losses : list_liketest loss list。accuracies : list_likeaccuracies list。"""plt.figure(figsize=(10, 4))plt.subplot(1, 2, 1)plt.plot(train_losses, 'o-', label='Training Loss')plt.plot(test_losses, 's-', label='Test Loss')plt.xlabel('Epoch')plt.ylabel('Loss')plt.title('Training and Test Loss')plt.legend()# plt.grid(True)plt.subplot(1, 2, 2)plt.plot(accuracies, 'd-', color='green')plt.xlabel('Epoch')plt.ylabel('Accuracy (%)')plt.title('Test Accuracy')# plt.grid(True)plt.tight_layout()timestamp = str(dt.now().strftime("%y%m%d%H%M%S"))plt.savefig('./results/training_metrics_{time}.png'.format(time=timestamp))plt.show()
6.模型预测与结果可视化
  1. 加载训练好的模型和参数,并将模型设置为评估模式
from model_class import Net
model = Net()
model.load_state_dict(torch.load('mnist_cnn_model_params.pth'))
model.eval()
  1. 加载测试集数据
# 测试集数据加载
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.1307,), (0.3081,))  # MNIST数据集的均值和标准差
])
test_dataset = datasets.MNIST(root='mnist_data', train=False, download=False, transform=transform)
test_loader = DataLoader(test_dataset, batch_size=512)
  1. 预测结果,并将部分结果可视化展示
# 预测函数
def predict_random_samples(model, test_dataset, num_samples=9, max_show_num=16):"""随机选择样本进行预测并可视化结果"""model.eval()indices = np.random.choice(len(test_dataset), num_samples, replace=False)# 计算子图网格的行数和列数cols = int(np.ceil(np.sqrt(min(num_samples, max_show_num))))  # 向上取整rows = int(np.ceil(min(num_samples, max_show_num) / cols))# 创建相应大小的子图网格fig, axes = plt.subplots(rows, cols, figsize=(cols * 2, rows * 2))# 如果只有一个子图,axes会是一个单独的对象,需要将其转为数组if num_samples == 1:axes = np.array([axes])else:# 将多维数组展平为一维数组axes = axes.flatten()# fig, axes = plt.subplots(3, 3, figsize=(10, 6))# axes = axes.flatten()correct = 0with torch.no_grad():for i, idx in enumerate(indices):image, true_label = test_dataset[idx]output = model(image.unsqueeze(0))pred = output.argmax(dim=1)correct += pred.eq(true_label).sum().item()# 反标准化以便正确显示图像img = image.squeeze().numpy() * 0.3081 + 0.1307# 只处理有效的子图索引if i < len(axes) and i <= max_show_num:axes[i].imshow(img, cmap='gray')axes[i].set_title(f'Pred: {pred}, True: {true_label}',color=('green' if pred == true_label else 'red'))axes[i].axis('off')# 隐藏多余的子图for i in range(num_samples, len(axes)):axes[i].axis('off')accuracy = 100. * correct / num_samplesprint(f'Accuracy: {correct}/{num_samples} ({accuracy:.2f}%)\n')plt.tight_layout()timestamp = str(dt.now().strftime("%y%m%d%H%M%S"))plt.savefig('./results/prediction_samples_{time}.png'.format(time=timestamp))plt.show()print(f"预测样本已保存为 'prediction_samples_{timestamp}.png'")

可视化结果
在这里插入图片描述

http://www.dtcms.com/a/307800.html

相关文章:

  • RAG:让AI更聪明的“外接大脑“ | AI小知识
  • MacroDroid Pro 功能强大的任务自动化和配置应用程序
  • PHP 与 MySQL 详解实战入门(1)
  • 发票闪印 v3.9.17 免费电子PDF发票批量打印工具绿色版
  • css 不错的按钮动画
  • 22.(vue3.x+vite) 组件动态导入 (懒加载defineAsyncComponent)
  • 超简单的跳动爱心
  • 数据库的隔离级别和mysql的隔离级别
  • Go语言实战:创建一个简单的 HTTP 服务器
  • uni-app用css编写族谱树家谱树
  • Docker 初学者需要了解的几个知识点 (六):docker-compose.yml (ThinkPHP)
  • Cursor结合Playwright MCP Server支持自动化
  • ACID原子性:确保数据库操作的可靠性
  • Docker 安装部署 OceanBase
  • QT5 widget控件设置背景图不生效的解决方案
  • 【运维基础】Linux 文件系统基本管理
  • win和Linux下载huggingface模型的方法
  • 【Linux】linux基础开发工具(二) 编译器gcc/g++、动静态库感性认识、自动化构建-make/Makefile
  • 交叉编译ARM环境
  • CentOS 6.10 上安装 GCC 7+
  • 计算机视觉CS231n学习(1)
  • Web3:在 VSCode 中基于 Foundry 快速构建 Solidity 智能合约本地开发环境
  • Excel 知识点汇总
  • 硬核技术协同:x86 生态、机密计算与云原生等技术如何为产业数字化转型筑底赋能
  • RabbitMQ 的死信队列完整指南 (With Spring Boot)
  • 云原生环境 DDoS 防护:容器化架构下的流量管控与弹性应对
  • Vmvare虚拟机的网络不可达问题
  • Java项目:基于SSM框架实现的网络财务管理系统【ssm+B/S架构+源码+数据库+毕业论文+远程部署】
  • 【学无止境,每天一题】[HNOI2003]激光炸弹
  • 分享低功耗单火线开关语音识别方案