基于Python的arXiv论文数据分析系统:从爬取到可视化的完整实践
基于Python的arXiv论文数据分析系统:从爬取到可视化的完整实践
本文将详细介绍如何用Python打造一个自动化的arXiv论文数据分析系统,实现论文爬取、数据存储、Web可视化和自动更新。
🎬 项目演示视频:B站完整功能演示
1. 项目背景
学术论文的爆炸式增长让研究者很难及时掌握最新进展。arXiv作为全球最大的预印本论文平台,涵盖了AI、CV、NLP等众多领域。手动检索和整理论文效率低下,因此我决定用Python实现一个自动化的arXiv论文数据分析系统。
2. 技术选型
- 后端爬虫与API:Python(arxiv、requests、pyyaml、Flask)
- 数据存储:JSON文件(轻量,便于前后端共享)
- 前端可视化:Vue3 + ECharts(趋势图、统计面板等)
- 自动化:GitHub Actions(定时任务、自动推送)
- 数据分析:scikit-learn、networkx、statsmodels
3. 核心实现
3.1 论文爬虫实现
import arxiv
import requests
import yaml
import json
import loggingdef get_daily_papers(topic, query="slam", max_results=2):"""爬取arXiv论文的核心函数"""content = dict()content_to_web = dict()# 使用arxiv库进行搜索search_engine = arxiv.Search(query=query,max_results=max_results,sort_by=arxiv.SortCriterion.SubmittedDate)for result in search_engine.results():paper_id = result.get_short_id()paper_title = result.titlepaper_url = result.entry_idpaper_abstract = result.summary.replace("\n", " ")paper_authors = get_authors(result.authors)paper_first_author = get_authors(result.authors, first_author=True)publish_time = result.published.date()update_time = result.updated.date()# 处理arXiv ID版本号ver_pos = paper_id.find('v')if ver_pos == -1:paper_key = paper_idelse:paper_key = paper_id[0:ver_pos]paper_url = f"http://arxiv.org/abs/{paper_key}"try:# 获取代码链接code_url = f"https://arxiv.paperswithcode.com/api/v0/papers/{paper_key}"r = requests.get(code_url).json()repo_url = Noneif "official" in r and r["official"]:repo_url = r["official"]["url"]# 构建数据格式if repo_url is not None:content[paper_key] = "|**{}**|**{}**|{} et.al.|[{}]({})|**[link]({})**|\n".format(update_time, paper_title, paper_first_author, paper_key, paper_url, repo_url)else:content[paper_key] = "|**{}**|**{}**|{} et.al.|[{}]({})|null|\n".format(update_time, paper_title, paper_first_author, paper_key, paper_url)except Exception as e:logging.error(f"exception: {e} with id: {paper_key}")data = {topic: content}return datadef get_authors(authors, first_author=False):"""处理作者信息"""if first_author:return str(authors[0])return ", ".join(str(author) for author in authors)
3.2 数据分析模块
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import LatentDirichletAllocation
import networkx as nx
import pandas as pd
import numpy as np
from statsmodels.tsa.arima.model import ARIMAdef extract_keywords(json_file, top_n=30):"""从论文数据中提取关键词"""with open(json_file, 'r', encoding='utf-8') as f:papers_data = json.load(f)# 提取论文标题texts = []for category in papers_data:for paper_id, paper_info in papers_data[category].items():match = re.search(r'\|\*\*(.*?)\*\*\|\*\*(.*?)\*\*\|', paper_info)if match:title = match.group(2)texts.append(title)# 自定义停用词custom_stop_words = set(['2020', '2021', '2022', '2023', '2024'])for year in range(1990, 2025):custom_stop_words.add(str(year))# TF-IDF向量化vectorizer = TfidfVectorizer(max_features=200,stop_words=list(custom_stop_words),token_pattern=r'(?u)\b[a-zA-Z][a-zA-Z-]+[a-zA-Z]\b',ngram_range=(1, 3),min_df=2)tfidf_matrix = vectorizer.fit_transform(texts)feature_names = vectorizer.get_feature_names_out()keyword_scores = np.sum(tfidf_matrix.toarray(), axis=0)# 过滤有效关键词valid_indices = []for i, word in enumerate(feature_names):if (word not in custom_stop_words and not word.isdigit() and len(word) >= 3):valid_indices.append(i)valid_scores = [(feature_names[i], float(keyword_scores[i] * 1.5)) for i in valid_indices]valid_scores.sort(key=lambda x: x[1], reverse=True)return valid_scores[:top_n]def topic_modeling(json_file, num_topics=5, num_words=10):"""使用LDA进行主题建模"""with open(json_file, 'r') as f:papers_data = json.load(f)# 提取论文标题texts = []for category in papers_data:for paper_id, paper_info in papers_data[category].items():match = re.search(r'\|\*\*(.*?)\*\*\|\*\*(.*?)\*\*\|', paper_info)if match:title = match.group(2)texts.append(title)# 自定义停用词custom_stop_words = set(['2020', '2021', '2022', '2023', '2024'])for year in range(1990, 2025):custom_stop_words.add(str(year))# CountVectorizer准备数据vectorizer = CountVectorizer(max_features=1000, stop_words=list(custom_stop_words),token_pattern=r'(?u)\b[a-zA-Z][a-zA-Z-]+[a-zA-Z]\b',ngram_range=(1, 3),min_df=2)X = vectorizer.fit_transform(texts)# 应用LDAlda = LatentDirichletAllocation(n_components=num_topics, random_state=42, learning_method='online')lda.fit(X)# 提取主题关键词feature_names = vectorizer.get_feature_names_out()topics = []for topic_idx, topic in enumerate(lda.components_):top_words_idx = topic.argsort()[:-num_words-1:-1]filtered_words = []for i in top_words_idx:word = feature_names[i]if (word not in custom_stop_words and not word.isdigit() and len(word) >= 3):filtered_words.append(word)topics.append(filtered_words[:num_words])return topicsdef time_series_analysis(json_file):"""分析论文发布的时间趋势"""with open(json_file, 'r') as f:papers_data = json.load(f)# 提取发布日期dates = []for category in papers_data:for paper_id, paper_info in papers_data[category].items():match = re.search(r'\|\*\*(.*?)\*\*\|', paper_info)if match:try:date_str = match.group(1)date = datetime.strptime(date_str, '%Y-%m-%d')dates.append(date)except:continue# 创建时间序列date_counts = pd.Series([1] * len(dates), index=dates)date_counts = date_counts.resample('D').sum().fillna(0)# ARIMA时间序列预测if len(date_counts) > 10:model = ARIMA(date_counts, order=(5,1,0))model_fit = model.fit()forecast = model_fit.forecast(steps=7)else:forecast = Nonereturn {'time_series': date_counts,'forecast': forecast}
3.3 Flask后端API实现
from flask import Flask, jsonify, request
from flask_cors import CORS
import json
import os
import reapp = Flask(__name__)
CORS(app)@app.route('/api/papers', methods=['GET'])
def get_papers():try:# 获取分页参数page = request.args.get('page', 1, type=int)per_page = request.args.get('per_page', 12, type=int)category = request.args.get('category', '')search = request.args.get('search', '')# 验证参数if page < 1:page = 1if per_page < 1 or per_page > 100:per_page = 12# 加载JSON数据with open(JSON_FILE, 'r') as f:papers = json.load(f)# 处理论文数据all_papers = []for cat, papers_dict in papers.items():if category and cat != category:continuefor paper_id, paper_info in papers_dict.items():# 解析论文信息parts = paper_info.split('|')if len(parts) >= 5:date = parts[1].replace('**', '') if len(parts) > 1 else ''title = parts[2].replace('**', '') if len(parts) > 2 else ''authors = parts[3] if len(parts) > 3 else ''# 解析PDF链接pdf_link_raw = parts[4] if len(parts) > 4 else ''pdf_link = ''if pdf_link_raw and pdf_link_raw != 'null':if '](http://arxiv.org/abs/' in pdf_link_raw:pdf_link = pdf_link_raw.split('](http://arxiv.org/abs/')[1].split(')')[0]pdf_link = f'http://arxiv.org/abs/{pdf_link}'elif pdf_link_raw.startswith('http'):pdf_link = pdf_link_raw# 解析代码链接code_link_raw = parts[5] if len(parts) > 5 else ''code_link = ''if code_link_raw and code_link_raw != 'null':if '](https://github.com/' in code_link_raw:code_link = code_link_raw.split('](https://github.com/')[1].split(')')[0]code_link = f'https://github.com/{code_link}'elif code_link_raw.startswith('http'):code_link = code_link_raw# 搜索过滤if search and search.lower() not in title.lower():continueall_papers.append({'id': paper_id,'category': cat,'date': date,'title': title,'authors': authors,'pdf_link': pdf_link,'code_link': code_link})# 按日期排序all_papers.sort(key=lambda x: x['date'], reverse=True)# 计算分页total = len(all_papers)start_idx = (page - 1) * per_pageend_idx = start_idx + per_pagepapers_page = all_papers[start_idx:end_idx]total_pages = (total + per_page - 1) // per_pagereturn jsonify({'papers': papers_page,'pagination': {'page': page,'per_page': per_page,'total': total,'total_pages': total_pages,'has_next': page < total_pages,'has_prev': page > 1},'categories': list(papers.keys())})except Exception as e:print(f"获取论文列表时出错: {str(e)}")return jsonify({'error': str(e)}), 500@app.route('/api/keywords', methods=['GET'])
def get_keywords():try:keywords = extract_keywords(JSON_FILE)return jsonify({'keywords': [{'word': k, 'weight': float(w)} for k, w in keywords]})except Exception as e:print(f"获取关键词时出错: {str(e)}")return jsonify({'error': str(e), 'keywords': []}), 500@app.route('/api/time-series', methods=['GET'])
def get_time_series():try:time_data = time_series_analysis(JSON_FILE)return jsonify({'time_series': {'index': [str(d.date()) for d in time_data['time_series'].index],'values': time_data['time_series'].tolist()},'forecast': {'index': [str(d.date()) for d in time_data['forecast'].index] if time_data['forecast'] is not None else [],'values': time_data['forecast'].tolist() if time_data['forecast'] is not None else []}})except Exception as e:print(f"获取时间序列时出错: {str(e)}")return jsonify({'error': str(e),'time_series': {'index': [], 'values': []},'forecast': {'index': [], 'values': []}}), 500
3.4 Vue3前端组件实现
<!-- App.vue 主组件 -->
<template><div id="app"><header><h1>学术论文分析平台</h1></header><div class="main-container"><!-- 侧边导航栏 --><div class="sidebar"><div v-for="(tab, index) in tabs" :key="index" class="sidebar-tab" :class="{ active: activeTab === index }"@click="changeTab(index)"><span class="tab-icon">{{ tab.icon }}</span><span class="tab-name">{{ tab.name }}</span></div></div><!-- 内容区域 --><main class="content-area"><!-- 论文列表页 --><div v-if="activeTab === 4" class="tab-content"><h2>最新论文列表</h2><div class="search-bar"><input v-model="searchQuery" type="text" placeholder="输入关键词搜索..." @keyup.enter="searchPapers" /><select v-model="selectedCategory" @change="searchPapers"><option value="">所有类别</option><option v-for="category in categories" :key="category" :value="category">{{ category }}</option></select><button @click="searchPapers">搜索</button></div><div v-if="papersData.length > 0" class="paper-list"><div v-for="paper in papersData" :key="paper.id" class="paper-card"><h3>{{ paper.title }}</h3><p>作者: {{ paper.authors }}</p><p>发布日期: {{ paper.date }}</p><p>类别: {{ paper.category }}</p><div class="paper-links"><a :href="paper.pdf_link" target="_blank">论文链接</a><a v-if="paper.code_link && paper.code_link !== 'null'" :href="paper.code_link" target="_blank">代码链接</a></div></div></div><!-- 分页控件 --><div v-if="pagination.total_pages > 1" class="pagination"><button @click="changePage(pagination.page - 1)" :disabled="!pagination.has_prev">上一页</button><span class="page-info">第 {{ pagination.page }} 页,共 {{ pagination.total_pages }} 页</span><button @click="changePage(pagination.page + 1)" :disabled="!pagination.has_next">下一页</button></div></div></main></div></div>
</template><script>
import axios from 'axios';export default {name: 'App',data() {return {tabs: [{ name: '关键词分析', icon: '🔍' },{ name: '主题分析', icon: '📊' },{ name: '关键词趋势预测', icon: '📈' },{ name: '时间趋势', icon: '📅' },{ name: '论文列表', icon: '📚' }],activeTab: 4,papersData: [],pagination: {page: 1,per_page: 12,total: 0,total_pages: 0,has_next: false,has_prev: false},searchQuery: '',selectedCategory: '',categories: []}},mounted() {this.fetchData();},methods: {async fetchData() {try {const response = await axios.get('/api/papers', {params: {page: this.pagination.page,per_page: this.pagination.per_page,category: this.selectedCategory,search: this.searchQuery}});this.papersData = response.data.papers;this.pagination = response.data.pagination;this.categories = response.data.categories;} catch (error) {console.error('获取数据失败:', error);}},async changePage(newPage) {this.pagination.page = newPage;await this.fetchData();},async searchPapers() {this.pagination.page = 1;await this.fetchData();},changeTab(index) {this.activeTab = index;}}
}
</script>
<!-- TimeSeriesAnalysis.vue 时间序列分析组件 -->
<template><div class="time-series"><div class="chart-header"><h2>📈 论文发布时间趋势分析</h2><p class="chart-description">基于历史数据分析研究趋势,帮助了解学术发展动态</p></div><div class="stats-panel" v-if="timeData"><div class="stat-item"><div class="stat-value">{{ getTotalPapers() }}</div><div class="stat-label">总论文数</div></div><div class="stat-item"><div class="stat-value">{{ getAveragePapers() }}</div><div class="stat-label">月均发布</div></div><div class="stat-item"><div class="stat-value">{{ getMaxPapers() }}</div><div class="stat-label">最高月发布</div></div><div class="stat-item"><div class="stat-value">{{ getTrendDirection() }}</div><div class="stat-label">趋势方向</div></div></div><div ref="timeChart" class="time-chart"></div></div>
</template><script>
import * as echarts from 'echarts';export default {name: 'TimeSeriesAnalysis',props: {timeData: Object},data() {return {chart: null}},mounted() {this.initChart();},methods: {getTotalPapers() {if (!this.timeData || !this.timeData.time_series || !this.timeData.time_series.values) return 0;return this.timeData.time_series.values.reduce((sum, val) => sum + val, 0);},getAveragePapers() {if (!this.timeData || !this.timeData.time_series || !this.timeData.time_series.values) return 0;const values = this.timeData.time_series.values;const sum = values.reduce((sum, val) => sum + val, 0);return Math.round(sum / values.length);},getMaxPapers() {if (!this.timeData || !this.timeData.time_series || !this.timeData.time_series.values) return 0;return Math.max(...this.timeData.time_series.values);},getTrendDirection() {if (!this.timeData || !this.timeData.time_series || !this.timeData.time_series.values) return '未知';const values = this.timeData.time_series.values;if (values.length < 2) return '数据不足';const recent = values.slice(-3);const earlier = values.slice(-6, -3);const recentAvg = recent.reduce((sum, val) => sum + val, 0) / recent.length;const earlierAvg = earlier.reduce((sum, val) => sum + val, 0) / earlier.length;if (recentAvg > earlierAvg * 1.1) return '📈 上升';if (recentAvg < earlierAvg * 0.9) return '📉 下降';return '➡️ 稳定';},initChart() {if (!this.timeData) return;this.chart = echarts.init(this.$refs.timeChart);const dates = this.timeData.time_series.index;const counts = this.timeData.time_series.values;const option = {animation: true,animationDuration: 2000,animationEasing: 'cubicOut',title: {text: '论文发布时间趋势分析',left: 'center',textStyle: {fontSize: 20,fontWeight: 'bold',color: '#2d3436'}},tooltip: {trigger: 'axis',backgroundColor: 'rgba(255, 255, 255, 0.95)',borderColor: '#4ecdc4',borderWidth: 2,formatter: function(params) {let result = `<div style="font-weight: bold; margin-bottom: 8px;">${params[0].axisValue}</div>`;params.forEach(param => {result += `<div style="display: flex; align-items: center; margin: 4px 0;"><span style="display: inline-block; width: 12px; height: 12px; background: ${param.color}; border-radius: 50%; margin-right: 8px;"></span><span style="font-weight: 500;">${param.seriesName}:</span><span style="margin-left: 8px; font-weight: bold;">${param.value}</span></div>`;});return result;}},xAxis: {type: 'category',data: dates,axisLine: { lineStyle: { color: '#bdc3c7' } },axisLabel: { color: '#636e72', fontSize: 12, rotate: 45 }},yAxis: {type: 'value',name: '论文数量',axisLine: { lineStyle: { color: '#bdc3c7' } },splitLine: { lineStyle: { color: '#ecf0f1', type: 'dashed' } }},series: [{name: '历史发布量',type: 'line',data: counts.map((value, index) => ({ value, xAxis: index })),smooth: true,lineStyle: {width: 4,color: {type: 'linear',x: 0, y: 0, x2: 0, y2: 1,colorStops: [{ offset: 0, color: '#4ecdc4' },{ offset: 1, color: '#44a08d' }]}},areaStyle: {color: {type: 'linear',x: 0, y: 0, x2: 0, y2: 1,colorStops: [{ offset: 0, color: 'rgba(78, 205, 196, 0.3)' },{ offset: 1, color: 'rgba(78, 205, 196, 0.05)' }]}},symbol: 'circle',symbolSize: 8,label: {show: true,position: 'top',formatter: '{c}',fontSize: 12,color: '#2d3436',fontWeight: 'bold'}}]};this.chart.setOption(option);}}
}
</script>
3.5 GitHub Actions自动化
# .github/workflows/cv-arxiv-daily.yml
name: Run Arxiv Papers Dailyon:workflow_dispatch:schedule:- cron: "0 0/12 * * *" # 每12小时执行一次env:GITHUB_USER_NAME: VincentqywGITHUB_USER_EMAIL: realcat@126.comjobs:build:name: updateruns-on: ubuntu-lateststeps:- name: Checkoutuses: actions/checkout@v3- name: Set up Python Envuses: actions/setup-python@v4with:python-version: '3.10'- name: Install dependenciesrun: |python -m pip install --upgrade pippip install arxiv requests pyyaml- name: Run daily arxiv run: |python daily_arxiv.py- name: Push new papersuses: github-actions-x/commit@v2.9with:github-token: ${{ secrets.GITHUB_TOKEN }}commit-message: "Github Action Automatic Update CV Arxiv Papers"files: README.md docs/cv-arxiv-daily.json docs/cv-arxiv-daily-web.json docs/index.mdrebase: 'true'name: ${{ env.GITHUB_USER_NAME }}email: ${{ env.GITHUB_USER_EMAIL }}
4. 部署与使用
4.1 本地开发环境
# 1. 克隆项目
git clone https://github.com/your-username/cv-arxiv-daily.git
cd cv-arxiv-daily# 2. 安装Python依赖
pip install arxiv requests pyyaml flask flask-cors scikit-learn networkx statsmodels# 3. 安装前端依赖
cd analysis/frontend
npm install# 4. 启动后端
cd ../backend
python app.py# 5. 启动前端
cd ../frontend
npm run serve
4.2 生产环境部署
# 使用Gunicorn部署Flask后端
pip install gunicorn
gunicorn -w 4 -b 0.0.0.0:5000 app:app# 构建前端
cd analysis/frontend
npm run build
5. 技术亮点
- 模块化设计:爬虫、API、前端完全解耦
- 数据分析:TF-IDF关键词提取、LDA主题建模、ARIMA时间序列预测
- 自动化部署:GitHub Actions实现无人值守运行
- 响应式UI:Vue3 + ECharts提供现代化用户体验
- 性能优化:分页加载、缓存策略、错误处理
6. 项目总结
6.1 核心功能模块
6.1.1 关键词分析系统
系统使用TF-IDF算法从论文标题中提取关键词,并通过词云和排行榜形式展示:
def extract_keywords(json_file, top_n=30):"""从论文数据中提取关键词"""with open(json_file, 'r', encoding='utf-8') as f:papers_data = json.load(f)# 提取论文标题texts = []for category in papers_data:for paper_id, paper_info in papers_data[category].items():match = re.search(r'\|\*\*(.*?)\*\*\|\*\*(.*?)\*\*\|', paper_info)if match:title = match.group(2)texts.append(title)# 自定义停用词,保留计算机专业术语custom_stop_words = set(['2020', '2021', '2022', '2023', '2024'])for year in range(1990, 2025):custom_stop_words.add(str(year))# TF-IDF向量化,支持词组提取vectorizer = TfidfVectorizer(max_features=200,stop_words=list(custom_stop_words),token_pattern=r'(?u)\b[a-zA-Z][a-zA-Z-]+[a-zA-Z]\b',ngram_range=(1, 3), # 提取1-3个词的词组min_df=2)tfidf_matrix = vectorizer.fit_transform(texts)feature_names = vectorizer.get_feature_names_out()keyword_scores = np.sum(tfidf_matrix.toarray(), axis=0)# 过滤有效关键词valid_indices = []for i, word in enumerate(feature_names):if (word not in custom_stop_words and not word.isdigit() and len(word) >= 3):valid_indices.append(i)valid_scores = [(feature_names[i], float(keyword_scores[i] * 1.5)) for i in valid_indices]valid_scores.sort(key=lambda x: x[1], reverse=True)return valid_scores[:top_n]
前端关键词可视化组件:
<!-- KeywordAnalysis.vue -->
<template><div class="keyword-analysis"><div ref="keywordCloud" class="keyword-cloud"></div><!-- 关键词排行表 --><div class="keyword-ranking"><h3>关键词排行</h3><div class="ranking-table-container"><table class="ranking-table"><thead><tr><th>排名</th><th>关键词</th><th>权重</th></tr></thead><tbody><tr v-for="(keyword, index) in keywords" :key="index"><td>{{ index + 1 }}</td><td><span class="keyword-tag" :style="{ backgroundColor: getCategoryColor(keyword.word),fontSize: getTagSize(keyword.weight, index)}">{{ keyword.word }}</span></td><td>{{ (keyword.weight).toFixed(2) }}</td></tr></tbody></table></div></div></div>
</template><script>
export default {methods: {getCategoryColor(word) {// 根据关键词确定类别颜色const lowerWord = word.toLowerCase();const categoryColors = {'vision': '#4285F4', 'learning': '#0F9D58', 'detection': '#DB4437','neural': '#673AB7', 'image': '#FF9800', 'segmentation': '#00BCD4','recognition': '#E91E63', 'network': '#607D8B', 'deep': '#9C27B0','transformer': '#3F51B5', 'tracking': '#F44336', 'attention': '#009688'};for (const category in categoryColors) {if (lowerWord.includes(category)) {return categoryColors[category];}}return '#757575';},getTagSize(weight, index) {// 根据排名设置字体大小if (index === 0) return '24px';else if (index <= 2) return '22px';else if (index <= 5) return '20px';else if (index <= 10) return '18px';else if (index <= 15) return '16px';else return '14px';}}
}
</script>
6.1.2 主题建模分析
使用LDA(Latent Dirichlet Allocation)算法进行主题建模,自动发现研究主题:
def topic_modeling(json_file, num_topics=5, num_words=10):"""使用LDA进行主题建模"""with open(json_file, 'r') as f:papers_data = json.load(f)# 提取论文标题texts = []for category in papers_data:for paper_id, paper_info in papers_data[category].items():match = re.search(r'\|\*\*(.*?)\*\*\|\*\*(.*?)\*\*\|', paper_info)if match:title = match.group(2)texts.append(title)# 自定义停用词custom_stop_words = set(['2020', '2021', '2022', '2023', '2024'])for year in range(1990, 2025):custom_stop_words.add(str(year))# CountVectorizer准备数据,支持词组提取vectorizer = CountVectorizer(max_features=1000, stop_words=list(custom_stop_words),token_pattern=r'(?u)\b[a-zA-Z][a-zA-Z-]+[a-zA-Z]\b',ngram_range=(1, 3), # 提取1-3个词的词组min_df=2)X = vectorizer.fit_transform(texts)# 应用LDAlda = LatentDirichletAllocation(n_components=num_topics, random_state=42, learning_method='online')lda.fit(X)# 提取主题关键词feature_names = vectorizer.get_feature_names_out()topics = []for topic_idx, topic in enumerate(lda.components_):top_words_idx = topic.argsort()[:-num_words-1:-1]filtered_words = []for i in top_words_idx:word = feature_names[i]if (word not in custom_stop_words and not word.isdigit() and len(word) >= 3):filtered_words.append(word)topics.append(filtered_words[:num_words])return topics
前端主题可视化组件:
<!-- TopicVisualization.vue -->
<template><div class="topic-visualization"><div class="topics-container"><div v-for="(topic, index) in topics" :key="index" class="topic-card"><div class="topic-header"><h3>主题 {{ index + 1 }}</h3></div><div class="topic-words"><span v-for="(word, wordIndex) in topic" :key="wordIndex" class="topic-word":style="{ fontSize: `${20 - wordIndex}px`, opacity: (1 - wordIndex * 0.05),fontWeight: wordIndex < 3 ? 'bold' : 'normal'}">{{ word }}</span></div></div></div></div>
</template><style scoped>
.topic-card {background-color: #f8f9fa;border-radius: 12px;padding: 20px;width: calc(33.33% - 25px);box-shadow: 0 4px 15px rgba(0, 0, 0, 0.1);transition: transform 0.3s ease, box-shadow 0.3s ease;border-top: 5px solid #1abc9c;
}.topic-card:hover {transform: translateY(-5px);box-shadow: 0 8px 25px rgba(0, 0, 0, 0.15);
}.topic-word {display: inline-block;background-color: #e9ecef;color: #495057;padding: 8px 15px;border-radius: 30px;margin-bottom: 8px;transition: all 0.2s ease;
}.topic-word:hover {background-color: #1abc9c;color: white;transform: scale(1.05);
}
</style>
6.1.3 关键词趋势预测
基于历史数据预测关键词发展趋势,使用线性回归和季节性调整:
@app.route('/api/predict-trend', methods=['GET'])
def predict_keyword_trend():try:keyword = request.args.get('keyword', '').lower()if not keyword:return jsonify({'error': '关键词不能为空'}), 400# 加载论文数据with open(JSON_FILE, 'r', encoding='utf-8') as f:papers_data = json.load(f)# 按月份统计包含该关键词的论文数量month_counts = {}total_matching = 0for category in papers_data:for paper_id, paper_info in papers_data[category].items():date_match = re.search(r'\|\*\*([\d-]+)\*\*\|', paper_info)title_match = re.search(r'\|\*\*(?:[\d-]+)\*\*\|\*\*(.*?)\*\*\|', paper_info)if date_match and title_match:date_str = date_match.group(1)title = title_match.group(1).lower()if keyword in title:total_matching += 1try:date = datetime.strptime(date_str, '%Y-%m-%d')month_key = date.strftime('%Y-%m')month_counts[month_key] = month_counts.get(month_key, 0) + 1except Exception as e:continue# 如果没有找到匹配的论文,生成模拟数据if not month_counts:now = datetime.now()for i in range(12, 0, -1):date = now - timedelta(days=i*30)month_key = date.strftime('%Y-%m')month_counts[month_key] = np.random.randint(2, 10)# 转换为时间序列dates = sorted(month_counts.keys())values = [month_counts[date] for date in dates]# 使用线性回归预测未来趋势X = np.arange(len(dates)).reshape(-1, 1)y = np.array(values)# 添加非线性特征:二次项和季节性X_poly = np.column_stack([X, X**2, np.sin(X * (2*np.pi/12))])# 拟合模型model = stats.linregress(np.arange(len(dates)), values)# 预测未来12个月last_date = datetime.strptime(dates[-1], '%Y-%m')future_dates = []future_values = []for i in range(1, 13):future_date = last_date + timedelta(days=i*30)future_month = future_date.strftime('%Y-%m')future_dates.append(future_month)# 预测值 = 线性趋势 + 季节性调整 + 随机扰动trend = model.intercept + model.slope * (len(dates) + i)seasonal = np.sin((len(dates) + i) * (2*np.pi/12)) * np.std(values) * 0.3noise = np.random.normal(0, np.std(values) * 0.1)predicted_value = max(0, trend + seasonal + noise)future_values.append(int(predicted_value))return jsonify({'historical': {'index': dates,'values': values},'prediction': {'index': future_dates,'values': future_values},'model_info': {'slope': float(model.slope),'intercept': float(model.intercept),'r_value': float(model.rvalue),'total_matching': total_matching}})except Exception as e:print(f"预测趋势时出错: {str(e)}")return jsonify({'error': str(e)}), 500
前端趋势预测组件:
<!-- KeywordTrendPrediction.vue -->
<template><div class="keyword-trend-prediction"><div class="prediction-form"><h3>关键词趋势预测</h3><p class="description">输入一个研究关键词,预测其在未来一年的发展趋势</p><div class="input-group"><input v-model="searchKeyword" type="text" placeholder="输入关键词,如: neural, vision, transformer..." @keyup.enter="predictTrend"/><button @click="predictTrend" :disabled="isLoading">{{ isLoading ? '预测中...' : '预测趋势' }}</button></div><div class="keyword-suggestions"><span>热门关键词: </span><span v-for="(keyword, index) in topKeywords" :key="index" class="suggestion-tag"@click="selectKeyword(keyword.word)">{{ keyword.word }}</span></div></div><div v-if="!isLoading && predictionResult" class="prediction-result"><div ref="trendChart" class="trend-chart"></div><div class="trend-summary"><h4>{{ searchKeyword }} 关键词趋势分析</h4><div class="stats-group"><div class="stat-item"><div class="stat-label">历史最高</div><div class="stat-value">{{ Math.max(...historicalData.values).toFixed(0) }}</div><div class="stat-date">{{ getMaxValueDate() }}</div></div><div class="stat-item"><div class="stat-label">预测峰值</div><div class="stat-value">{{ Math.max(...predictionData.values).toFixed(0) }}</div><div class="stat-date">{{ getMaxPredictionDate() }}</div></div><div class="stat-item"><div class="stat-label">年度增长</div><div class="stat-value" :class="getGrowthClass()">{{ getGrowthRate() }}%</div><div class="stat-trend">{{ getGrowthTrend() }}</div></div></div></div></div><!-- 算法说明面板 --><div class="algorithm-info-panel"><h3 class="algorithm-title">预测算法说明</h3><div class="algorithm-content"><p>当前系统使用<strong>线性回归模型</strong>结合<strong>季节性分量</strong>进行时序预测:</p><ol><li>收集历史数据:按月汇总包含目标关键词的论文数量</li><li>数据增强:若数据不足,系统会自动补充模拟数据</li><li>主要算法:使用<code>stats.linregress</code>建立线性回归模型</li><li>季节性调整:添加基于正弦函数的季节性波动(周期为12个月)</li><li>随机扰动:添加小量随机噪声增加预测的自然变化</li></ol><p class="formula">预测模型:Y = β₀ + β₁X + sin(2π·X/12)·σ(Y)·0.3 + ε</p></div></div></div>
</template>
6.1.4 用户认证系统
实现完整的用户注册、登录和权限管理:
@app.route('/api/register', methods=['POST'])
def register():data = request.jsonif not data or not data.get('username') or not data.get('email') or not data.get('password'):return jsonify({'message': '请提供完整的注册信息', 'success': False}), 400username = data.get('username')email = data.get('email')password = data.get('password')# 密码加密hashed_password = bcrypt.hashpw(password.encode('utf-8'), bcrypt.gensalt())try:conn = sqlite3.connect(DB_PATH)c = conn.cursor()c.execute("INSERT INTO users (username, email, password) VALUES (?, ?, ?)", (username, email, hashed_password.decode('utf-8')))conn.commit()conn.close()return jsonify({'message': '注册成功', 'success': True}), 201except sqlite3.IntegrityError:return jsonify({'message': '用户名或邮箱已存在', 'success': False}), 400except Exception as e:return jsonify({'message': f'注册失败: {str(e)}', 'success': False}), 500@app.route('/api/login', methods=['POST'])
def login():data = request.jsonif not data or not data.get('username') or not data.get('password'):return jsonify({'message': '请提供用户名和密码', 'success': False}), 400username = data.get('username')password = data.get('password')try:conn = sqlite3.connect(DB_PATH)c = conn.cursor()c.execute("SELECT * FROM users WHERE username = ?", (username,))user = c.fetchone()conn.close()if user and bcrypt.checkpw(password.encode('utf-8'), user[3].encode('utf-8')):# 生成JWT tokentoken = jwt.encode({'user_id': user[0],'username': user[1],'exp': datetime.utcnow() + timedelta(days=7)}, app.config['SECRET_KEY'], algorithm="HS256")return jsonify({'message': '登录成功','success': True,'token': token,'user': {'id': user[0],'username': user[1],'email': user[2]}}), 200else:return jsonify({'message': '用户名或密码错误', 'success': False}), 401except Exception as e:return jsonify({'message': f'登录失败: {str(e)}', 'success': False}), 500
6.2 系统特色功能
6.2.1 智能数据解析
系统能够自动解析arXiv论文的Markdown格式数据,提取关键信息:
def parse_paper_info(paper_info):"""解析论文信息字符串"""parts = paper_info.split('|')if len(parts) >= 5:date = parts[1].replace('**', '') if len(parts) > 1 else ''title = parts[2].replace('**', '') if len(parts) > 2 else ''authors = parts[3] if len(parts) > 3 else ''# 解析PDF链接 - 格式: [ID](http://arxiv.org/abs/ID)pdf_link_raw = parts[4] if len(parts) > 4 else ''pdf_link = ''if pdf_link_raw and pdf_link_raw != 'null':if '](http://arxiv.org/abs/' in pdf_link_raw:pdf_link = pdf_link_raw.split('](http://arxiv.org/abs/')[1].split(')')[0]pdf_link = f'http://arxiv.org/abs/{pdf_link}'elif pdf_link_raw.startswith('http'):pdf_link = pdf_link_raw# 解析代码链接 - 格式: **[link](URL)** 或 nullcode_link_raw = parts[5] if len(parts) > 5 else ''code_link = ''if code_link_raw and code_link_raw != 'null':if '](https://github.com/' in code_link_raw:code_link = code_link_raw.split('](https://github.com/')[1].split(')')[0]code_link = f'https://github.com/{code_link}'elif code_link_raw.startswith('http'):code_link = code_link_rawreturn {'date': date,'title': title,'authors': authors,'pdf_link': pdf_link,'code_link': code_link}return None
6.2.2 响应式UI设计
前端采用现代化的响应式设计,支持多种设备:
<style scoped>
/* 响应式设计 */
@media (max-width: 1200px) {.topic-card {width: calc(50% - 25px);}
}@media (max-width: 768px) {.topic-card {width: 100%;}.sidebar {min-height: 60px;}.sidebar-tab {padding: 12px 18px;min-width: 80px;}.tab-icon {margin-bottom: 8px;font-size: 1.2em;}.tab-name {font-size: 13px;}
}/* 现代化样式 */
.paper-card {border: 1px solid #e0e0e0;border-radius: 12px;padding: 20px;background: linear-gradient(135deg, #f8f9fa 0%, #ffffff 100%);transition: all 0.3s ease;box-shadow: 0 2px 10px rgba(0, 0, 0, 0.1);position: relative;overflow: hidden;
}.paper-card::before {content: '';position: absolute;top: 0;left: 0;right: 0;height: 4px;background: linear-gradient(90deg, #4ecdc4 0%, #44a08d 100%);
}.paper-card:hover {transform: translateY(-5px);box-shadow: 0 8px 25px rgba(0, 0, 0, 0.15);
}.paper-links a {color: #4ecdc4;padding: 8px 16px;border-radius: 20px;background: rgba(78, 205, 196, 0.1);transition: all 0.3s ease;font-weight: 500;text-decoration: none;
}.paper-links a:hover {background: rgba(78, 205, 196, 0.2);transform: scale(1.05);
}
</style>
6.2.3 自动化数据更新
通过GitHub Actions实现无人值守的数据更新:
# .github/workflows/cv-arxiv-daily.yml
name: Run Arxiv Papers Dailyon:workflow_dispatch: # 手动触发schedule:- cron: "0 0/12 * * *" # 每12小时自动执行jobs:build:name: updateruns-on: ubuntu-lateststeps:- name: Checkoutuses: actions/checkout@v3- name: Set up Python Envuses: actions/setup-python@v4with:python-version: '3.10'- name: Install dependenciesrun: |python -m pip install --upgrade pippip install arxiv requests pyyaml- name: Run daily arxiv run: |python daily_arxiv.py- name: Push new papersuses: github-actions-x/commit@v2.9with:github-token: ${{ secrets.GITHUB_TOKEN }}commit-message: "Github Action Automatic Update CV Arxiv Papers"files: README.md docs/cv-arxiv-daily.json docs/cv-arxiv-daily-web.json docs/index.mdrebase: 'true'name: ${{ env.GITHUB_USER_NAME }}email: ${{ env.GITHUB_USER_EMAIL }}
6.3 技术栈总结
后端技术栈:
- Python 3.10+:核心开发语言
- Flask:轻量级Web框架
- arxiv:arXiv API客户端
- requests:HTTP请求库
- scikit-learn:机器学习库(TF-IDF、LDA)
- networkx:图论分析库
- statsmodels:时间序列分析(ARIMA)
- bcrypt:密码加密
- PyJWT:JWT令牌管理
- SQLite:轻量级数据库
前端技术栈:
- Vue 3:渐进式JavaScript框架
- ECharts:数据可视化库
- echarts-wordcloud:词云插件
- Axios:HTTP客户端
- CSS3:现代化样式设计
部署与自动化:
- GitHub Actions:CI/CD自动化
- Docker:容器化部署
- Nginx:反向代理服务器
- Redis:缓存系统(可选)
数据存储:
- JSON:结构化数据存储
- SQLite:用户数据管理
- 文件系统:论文数据存储
6.4 项目价值与应用
6.4.1 学术研究价值
- 及时获取:自动获取最新研究动态
- 趋势分析:通过数据可视化发现研究趋势
- 主题发现:LDA算法自动识别研究主题
- 预测分析:基于历史数据预测未来发展方向
6.4.2 技术实现亮点
- 模块化设计:各组件独立,便于维护和扩展
- 配置驱动:通过YAML文件灵活配置
- 自动化运行:GitHub Actions实现无人值守
- 响应式UI:支持多设备访问
- 数据分析:集成多种机器学习算法
6.4.3 扩展潜力
- 多源集成:可扩展到IEEE、ACM等平台
- AI增强:集成大语言模型进行摘要生成
- 移动端:开发React Native或Flutter应用
- 协作功能:支持团队协作和分享
- 个性化推荐:基于用户兴趣的智能推荐
这个项目不仅是一个实用的学术工具,更是一个展示现代Web开发技术的完整案例,涵盖了从数据爬取、存储、分析到可视化的全流程实现。