027_国际化与本地化
027_国际化与本地化
概述
本文档介绍如何构建支持多语言、多地区的Claude应用,包括语言检测、自动翻译、文化适配等功能。
语言检测与处理
1. 语言检测系统
import re
from typing import Dict, Optional, List, Tuple
from langdetect import detect, detect_langs
from anthropic import Anthropicclass LanguageDetector:def __init__(self):# 语言映射表self.language_map = {'zh': 'zh-CN', # 中文简体'zh-cn': 'zh-CN','zh-tw': 'zh-TW', # 中文繁体'en': 'en-US','ja': 'ja-JP','ko': 'ko-KR','fr': 'fr-FR','de': 'de-DE','es': 'es-ES','ru': 'ru-RU','ar': 'ar-SA','hi': 'hi-IN'}# 语言特征模式self.language_patterns = {'zh-CN': [r'[\u4e00-\u9fff]', # 中文字符r'[的是了在有个为上也把]' # 简体字特征词],'zh-TW': [r'[\u4e00-\u9fff]',r'[的是了在有個為上也把]' # 繁体字特征词],'ja-JP': [r'[\u3040-\u309f]', # 平假名r'[\u30a0-\u30ff]', # 片假名r'[\u4e00-\u9faf]' # 汉字],'ko-KR': [r'[\uac00-\ud7af]' # 韩文字符],'ar-SA': [r'[\u0600-\u06ff]' # 阿拉伯字符],'hi-IN': [r'[\u0900-\u097f]' # 天城文字符]}def detect_language(self, text: str) -> Dict[str, str]:"""检测文本语言"""if not text.strip():return {'language': 'unknown', 'confidence': 0.0}# 使用多种方法检测detection_results = {}# 1. 基于字符模式检测pattern_result = self._detect_by_patterns(text)if pattern_result:detection_results['pattern'] = pattern_result# 2. 使用langdetect库try:lang_detect_result = detect(text)confidence_results = detect_langs(text)# 映射到标准语言代码mapped_lang = self.language_map.get(lang_detect_result, lang_detect_result)detection_results['langdetect'] = {'language': mapped_lang,'confidence': confidence_results[0].prob if confidence_results else 0.0}except Exception as e:print(f"语言检测失败: {e}")# 3. 综合判断final_result = self._combine_results(detection_results)return final_resultdef _detect_by_patterns(self, text: str) -> Optional[Dict[str, str]]:"""基于字符模式检测语言"""pattern_scores = {}for lang, patterns in self.language_patterns.items():score = 0for pattern in patterns:matches = len(re.findall(pattern, text))score += matchesif score > 0:pattern_scores[lang] = score / len(text)if pattern_scores:best_lang = max(pattern_scores, key=pattern_scores.get)return {'language': best_lang,'confidence': min(pattern_scores[best_lang] * 2, 1.0)}return Nonedef _combine_results(self, results: Dict) -> Dict[str, str]:"""综合多种检测结果"""if not results:return {'language': 'en-US', 'confidence': 0.0}# 优先使用模式匹配的结果(对中日韩阿拉伯文更准确)if 'pattern' in results and results['pattern']['confidence'] > 0.7:return results['pattern']# 否则使用langdetect的结果if 'langdetect' in results:return results['langdetect']# 最后使用模式匹配的结果if 'pattern' in results:return results['pattern']return {'language': 'en-US', 'confidence': 0.0}# 多语言文本处理器
class MultilingualTextProcessor:def __init__(self, client: Anthropic):self.client = clientself.detector = LanguageDetector()self.supported_languages = {'zh-CN': '中文 (简体)','zh-TW': '中文 (繁體)','en-US': 'English','ja-JP': '日本語','ko-KR': '한국어','fr-FR': 'Français','de-DE': 'Deutsch','es-ES': 'Español','ru-RU': 'Русский','ar-SA': 'العربية','hi-IN': 'हिन्दी'}def process_multilingual_input(self,text: str,target_language: Optional[str] = None) -> Dict[str, str]:"""处理多语言输入"""# 检测输入语言detection = self.detector.detect_language(text)source_language = detection['language']result = {'original_text': text,'detected_language': source_language,'confidence': detection['confidence'],'processed_text': text}# 如果指定了目标语言且与检测语言不同,进行翻译if (target_language and target_language != source_language andtarget_language in self.supported_languages):translated = self.translate_text(text,source_language,target_language)result['translated_text'] = translatedresult['target_language'] = target_languagereturn resultdef translate_text(self,text: str,source_lang: str,target_lang: str) -> str:"""翻译文本"""source_name = self.supported_languages.get(source_lang, source_lang)target_name = self.supported_languages.get(target_lang, target_lang)prompt = f"""请将以下{source_name}文本翻译成{target_name}:原文:{text}翻译(请只返回翻译结果,不要包含其他说明):"""response = self.client.messages.create(model="claude-3-5-sonnet-20241022",max_tokens=2000,messages=[{"role": "user","content": prompt}])return response.content[0].text.strip()
2. 智能语言适配
class LanguageAdapter:def __init__(self, client: Anthropic):self.client = clientself.language_configs = {'zh-CN': {'greeting': '您好','system_prompt': '你是一个有用的AI助手,请用简体中文回答。','date_format': '%Y年%m月%d日','number_format': 'chinese_simplified','cultural_context': 'chinese_mainland'},'zh-TW': {'greeting': '您好','system_prompt': '你是一個有用的AI助手,請用繁體中文回答。','date_format': '%Y年%m月%d日','number_format': 'chinese_traditional','cultural_context': 'taiwan'},'en-US': {'greeting': 'Hello','system_prompt': 'You are a helpful AI assistant. Please respond in English.','date_format': '%B %d, %Y','number_format': 'us','cultural_context': 'american'},'ja-JP': {'greeting': 'こんにちは','system_prompt': 'あなたは役に立つAIアシスタントです。日本語で回答してください。','date_format': '%Y年%m月%d日','number_format': 'japanese','cultural_context': 'japanese'},'ko-KR': {'greeting': '안녕하세요','system_prompt': '당신은 도움이 되는 AI 어시스턴트입니다. 한국어로 답변해주세요.','date_format': '%Y년 %m월 %d일','number_format': 'korean','cultural_context': 'korean'},'ar-SA': {'greeting': 'السلام عليكم','system_prompt': 'أنت مساعد ذكي مفيد. يرجى الرد باللغة العربية.','date_format': '%d/%m/%Y','number_format': 'arabic','cultural_context': 'arabic','rtl': True # 从右到左}}def adapt_response(self,user_input: str,detected_language: str,target_language: Optional[str] = None) -> str:"""根据语言适配响应"""# 确定使用的语言response_language = target_language or detected_languageif response_language not in self.language_configs:response_language = 'en-US' # 默认语言config = self.language_configs[response_language]# 构建系统提示system_prompt = config['system_prompt']# 添加文化上下文cultural_context = self._get_cultural_context(config['cultural_context'])if cultural_context:system_prompt += f"\n\n{cultural_context}"# 发送请求response = self.client.messages.create(model="claude-3-5-sonnet-20241022",max_tokens=2000,system=system_prompt,messages=[{"role": "user","content": user_input}])response_text = response.content[0].text# 后处理:格式化数字、日期等formatted_response = self._format_response(response_text,config)return formatted_responsedef _get_cultural_context(self, culture: str) -> str:"""获取文化上下文提示"""contexts = {'chinese_mainland': '请注意中国大陆的文化背景和社会环境。','taiwan': '請注意台灣的文化背景和社會環境。','american': 'Please consider American cultural context and social norms.','japanese': '日本の文化的背景と社会的文脈を考慮してください。','korean': '한국의 문화적 배경과 사회적 맥락을 고려해주세요.','arabic': 'يرجى مراعاة السياق الثقافي والاجتماعي العربي.'}return contexts.get(culture, '')def _format_response(self,text: str,config: Dict[str, str]) -> str:"""格式化响应文本"""formatted = text# 格式化日期(简化示例)if config['date_format'] and 'today' in text.lower():from datetime import datetimetoday = datetime.now().strftime(config['date_format'])formatted = re.sub(r'\btoday\b',today,formatted,flags=re.IGNORECASE)# 其他格式化逻辑...return formatted# 区域化管理器
class LocalizationManager:def __init__(self):self.localizations = {}self.default_locale = 'en-US'def load_localizations(self, locale_data: Dict[str, Dict[str, str]]):"""加载本地化数据"""self.localizations.update(locale_data)def get_text(self,key: str,locale: str,**kwargs) -> str:"""获取本地化文本"""# 尝试获取指定语言的文本if locale in self.localizations:locale_texts = self.localizations[locale]if key in locale_texts:text = locale_texts[key]# 支持参数替换return text.format(**kwargs) if kwargs else text# 回退到默认语言if self.default_locale in self.localizations:default_texts = self.localizations[self.default_locale]if key in default_texts:text = default_texts[key]return text.format(**kwargs) if kwargs else text# 如果都没有,返回key本身return keydef get_supported_locales(self) -> List[str]:"""获取支持的语言列表"""return list(self.localizations.keys())# 本地化数据示例
LOCALIZATION_DATA = {'en-US': {'welcome': 'Welcome!','error_occurred': 'An error occurred: {error}','processing': 'Processing your request...','goodbye': 'Goodbye! Have a great day!','help_text': 'How can I help you today?'},'zh-CN': {'welcome': '欢迎!','error_occurred': '发生错误:{error}','processing': '正在处理您的请求...','goodbye': '再见!祝您有美好的一天!','help_text': '今天我可以为您做些什么?'},'zh-TW': {'welcome': '歡迎!','error_occurred': '發生錯誤:{error}','processing': '正在處理您的請求...','goodbye': '再見!祝您有美好的一天!','help_text': '今天我可以為您做些什麼?'},'ja-JP': {'welcome': 'いらっしゃいませ!','error_occurred': 'エラーが発生しました:{error}','processing': 'リクエストを処理中...','goodbye': 'さようなら!良い一日をお過ごしください!','help_text': '今日はどのようにお手伝いできますか?'}
}
自动翻译系统
1. 上下文感知翻译
class ContextAwareTranslator:def __init__(self, client: Anthropic):self.client = clientself.translation_cache = {}self.context_memory = {}def translate_with_context(self,text: str,source_lang: str,target_lang: str,context: Optional[str] = None,domain: Optional[str] = None) -> Dict[str, str]:"""带上下文的翻译"""# 检查缓存cache_key = f"{source_lang}:{target_lang}:{hash(text)}"if cache_key in self.translation_cache:return self.translation_cache[cache_key]# 构建翻译提示prompt_parts = []# 添加领域信息if domain:domain_context = self._get_domain_context(domain, target_lang)prompt_parts.append(domain_context)# 添加上下文信息if context:prompt_parts.append(f"上下文:{context}")# 添加翻译指令translation_instruction = self._build_translation_instruction(source_lang,target_lang,domain)prompt_parts.append(translation_instruction)# 添加待翻译文本prompt_parts.append(f"待翻译文本:{text}")prompt_parts.append("翻译结果:")prompt = "\n\n".join(prompt_parts)# 调用APIresponse = self.client.messages.create(model="claude-3-5-sonnet-20241022",max_tokens=2000,temperature=0.3, # 降低温度以获得更一致的翻译messages=[{"role": "user","content": prompt}])translation = response.content[0].text.strip()# 后处理cleaned_translation = self._post_process_translation(translation,target_lang)result = {'source_text': text,'target_text': cleaned_translation,'source_language': source_lang,'target_language': target_lang,'domain': domain,'context': context}# 缓存结果self.translation_cache[cache_key] = resultreturn resultdef _build_translation_instruction(self,source_lang: str,target_lang: str,domain: Optional[str]) -> str:"""构建翻译指令"""lang_names = {'zh-CN': '简体中文','zh-TW': '繁体中文','en-US': '英语','ja-JP': '日语','ko-KR': '韩语','fr-FR': '法语','de-DE': '德语','es-ES': '西班牙语'}source_name = lang_names.get(source_lang, source_lang)target_name = lang_names.get(target_lang, target_lang)instruction = f"请将以下{source_name}文本准确翻译成{target_name}。"# 添加特定要求requirements = ["保持原文的语气和风格","确保术语的准确性","保持句子的自然流畅"]if domain:domain_requirements = self._get_domain_requirements(domain)requirements.extend(domain_requirements)instruction += "翻译要求:\n" + "\n".join(f"- {req}" for req in requirements)return instructiondef _get_domain_context(self, domain: str, target_lang: str) -> str:"""获取领域上下文"""domain_contexts = {'technical': {'zh-CN': '这是技术文档翻译,请注意保持技术术语的准确性。','en-US': 'This is technical documentation translation. Please maintain accuracy of technical terms.'},'medical': {'zh-CN': '这是医学文档翻译,请确保医学术语的准确性。','en-US': 'This is medical documentation translation. Please ensure accuracy of medical terminology.'},'legal': {'zh-CN': '这是法律文档翻译,请保持法律术语的精确性。','en-US': 'This is legal documentation translation. Please maintain precision of legal terms.'},'business': {'zh-CN': '这是商务文档翻译,请使用正式的商务语言。','en-US': 'This is business documentation translation. Please use formal business language.'}}return domain_contexts.get(domain, {}).get(target_lang, '')def _get_domain_requirements(self, domain: str) -> List[str]:"""获取领域特定要求"""requirements = {'technical': ['保持技术术语不变或使用标准翻译','保留代码片段和命令不翻译'],'medical': ['使用标准医学术语','保持剂量和医学数据的准确性'],'legal': ['使用准确的法律术语','保持条款结构的清晰性'],'business': ['使用正式商务语言','保持数字和日期格式的本地化']}return requirements.get(domain, [])def _post_process_translation(self,translation: str,target_lang: str) -> str:"""后处理翻译结果"""cleaned = translation# 移除多余的引号或说明cleaned = re.sub(r'^["\']|["\']$', '', cleaned)cleaned = re.sub(r'^翻译[::]?\s*', '', cleaned)cleaned = re.sub(r'^Translation[:]?\s*', '', cleaned, flags=re.IGNORECASE)# 处理特定语言的格式if target_lang in ['zh-CN', 'zh-TW']:# 中文标点符号规范化cleaned = cleaned.replace('。 ', '。')cleaned = cleaned.replace(', ', ',')return cleaned.strip()# 批量翻译管理器
class BatchTranslationManager:def __init__(self, translator: ContextAwareTranslator):self.translator = translatorself.translation_queue = []self.results = {}def add_translation_task(self,task_id: str,text: str,source_lang: str,target_lang: str,context: Optional[str] = None,domain: Optional[str] = None,priority: int = 1):"""添加翻译任务"""task = {'id': task_id,'text': text,'source_lang': source_lang,'target_lang': target_lang,'context': context,'domain': domain,'priority': priority,'created_at': datetime.now()}self.translation_queue.append(task)# 按优先级排序self.translation_queue.sort(key=lambda x: (x['priority'], x['created_at']),reverse=True)def process_batch(self, batch_size: int = 10) -> Dict[str, Any]:"""批量处理翻译任务"""if not self.translation_queue:return {'processed': 0, 'results': {}}# 取出待处理的任务tasks_to_process = self.translation_queue[:batch_size]self.translation_queue = self.translation_queue[batch_size:]# 处理任务batch_results = {}processed_count = 0for task in tasks_to_process:try:result = self.translator.translate_with_context(text=task['text'],source_lang=task['source_lang'],target_lang=task['target_lang'],context=task['context'],domain=task['domain'])batch_results[task['id']] = {'status': 'success','result': result,'processed_at': datetime.now()}processed_count += 1except Exception as e:batch_results[task['id']] = {'status': 'error','error': str(e),'processed_at': datetime.now()}# 更新结果self.results.update(batch_results)return {'processed': processed_count,'total_in_batch': len(tasks_to_process),'remaining_in_queue': len(self.translation_queue),'results': batch_results}
2. 翻译质量评估
class TranslationQualityAssessor:def __init__(self, client: Anthropic):self.client = clientself.quality_metrics = ['accuracy', # 准确性'fluency', # 流畅性'completeness', # 完整性'consistency', # 一致性'cultural_appropriateness' # 文化适应性]def assess_translation(self,source_text: str,translated_text: str,source_lang: str,target_lang: str,domain: Optional[str] = None) -> Dict[str, Any]:"""评估翻译质量"""assessment_prompt = self._build_assessment_prompt(source_text,translated_text,source_lang,target_lang,domain)response = self.client.messages.create(model="claude-3-5-sonnet-20241022",max_tokens=1500,temperature=0.1,messages=[{"role": "user","content": assessment_prompt}])# 解析评估结果assessment_text = response.content[0].textscores = self._parse_assessment_scores(assessment_text)# 计算总体分数overall_score = sum(scores.values()) / len(scores) if scores else 0# 生成建议suggestions = self._generate_improvement_suggestions(scores,source_text,translated_text)return {'overall_score': overall_score,'detailed_scores': scores,'suggestions': suggestions,'assessment_text': assessment_text}def _build_assessment_prompt(self,source_text: str,translated_text: str,source_lang: str,target_lang: str,domain: Optional[str]) -> str:"""构建评估提示"""lang_names = {'zh-CN': '简体中文','en-US': '英语','ja-JP': '日语'}source_name = lang_names.get(source_lang, source_lang)target_name = lang_names.get(target_lang, target_lang)prompt = f"""请评估以下翻译质量。从{source_name}翻译到{target_name}:原文:{source_text}译文:{translated_text}请从以下几个方面评分(1-10分,10分最高):1. 准确性(Accuracy)- 翻译是否准确传达原文意思
2. 流畅性(Fluency)- 译文是否自然流畅
3. 完整性(Completeness)- 是否完整翻译了所有内容
4. 一致性(Consistency)- 术语和风格是否一致
5. 文化适应性(Cultural Appropriateness)- 是否适应目标语言文化请按以下格式输出:
准确性:X分 - 评价
流畅性:X分 - 评价
完整性:X分 - 评价
一致性:X分 - 评价
文化适应性:X分 - 评价总体评价:
改进建议:"""if domain:prompt += f"\n\n注意:这是{domain}领域的翻译,请特别关注专业术语的准确性。"return promptdef _parse_assessment_scores(self, assessment_text: str) -> Dict[str, float]:"""解析评估分数"""scores = {}patterns = {'accuracy': r'准确性[::]\s*(\d+(?:\.\d+)?)分','fluency': r'流畅性[::]\s*(\d+(?:\.\d+)?)分','completeness': r'完整性[::]\s*(\d+(?:\.\d+)?)分','consistency': r'一致性[::]\s*(\d+(?:\.\d+)?)分','cultural_appropriateness': r'文化适应性[::]\s*(\d+(?:\.\d+)?)分'}for metric, pattern in patterns.items():match = re.search(pattern, assessment_text)if match:scores[metric] = float(match.group(1))return scoresdef _generate_improvement_suggestions(self,scores: Dict[str, float],source_text: str,translated_text: str) -> List[str]:"""生成改进建议"""suggestions = []# 基于分数生成建议if scores.get('accuracy', 10) < 7:suggestions.append("建议重新检查翻译的准确性,确保所有关键信息都被正确传达")if scores.get('fluency', 10) < 7:suggestions.append("建议改进译文的流畅性,使其更符合目标语言的表达习惯")if scores.get('completeness', 10) < 8:suggestions.append("请检查是否遗漏了任何内容,确保翻译的完整性")if scores.get('consistency', 10) < 7:suggestions.append("建议统一术语翻译,保持整体风格的一致性")if scores.get('cultural_appropriateness', 10) < 7:suggestions.append("建议考虑目标语言的文化背景,调整表达方式")return suggestions
文化适配
1. 文化敏感内容处理
class CulturalAdaptationManager:def __init__(self, client: Anthropic):self.client = clientself.cultural_rules = self._load_cultural_rules()self.sensitive_topics = self._load_sensitive_topics()def _load_cultural_rules(self) -> Dict[str, Dict]:"""加载文化规则"""return {'zh-CN': {'formal_address': True, # 使用敬语'avoid_direct_refusal': True, # 避免直接拒绝'prefer_indirect_communication': True, # 偏好间接沟通'respect_hierarchy': True, # 尊重等级'gift_giving_taboos': ['钟表', '白花'],'lucky_numbers': [6, 8, 9],'unlucky_numbers': [4, 7],'color_meanings': {'red': 'fortune, joy','white': 'mourning, purity','black': 'evil, mourning'}},'ja-JP': {'formal_address': True,'bow_culture': True,'group_harmony': True,'avoid_direct_confrontation': True,'business_card_etiquette': True,'gift_wrapping_important': True,'unlucky_numbers': [4, 9],'seasonal_awareness': True},'ar-SA': {'islamic_considerations': True,'right_hand_preference': True,'modest_dress': True,'prayer_times': True,'halal_requirements': True,'family_honor': True,'gender_interactions': 'conservative'},'en-US': {'direct_communication': True,'individual_focus': True,'time_sensitive': True,'informal_acceptable': True,'diversity_awareness': True}}def _load_sensitive_topics(self) -> Dict[str, List[str]]:"""加载敏感话题"""return {'zh-CN': ['政治敏感', '历史争议', '社会敏感事件'],'ja-JP': ['历史问题', '战争相关', '等级制度'],'ar-SA': ['宗教争议', '政治制度', '社会改革'],'general': ['种族歧视', '性别歧视', '暴力内容']}def adapt_content(self,content: str,target_culture: str,content_type: str = 'general') -> Dict[str, Any]:"""适配内容到目标文化"""cultural_rules = self.cultural_rules.get(target_culture, {})# 检查敏感内容sensitivity_check = self._check_cultural_sensitivity(content,target_culture)if sensitivity_check['has_issues']:adapted_content = self._adapt_sensitive_content(content,target_culture,sensitivity_check['issues'])else:adapted_content = content# 应用文化规则final_content = self._apply_cultural_rules(adapted_content,cultural_rules,content_type)return {'original_content': content,'adapted_content': final_content,'target_culture': target_culture,'adaptations_made': sensitivity_check.get('issues', []),'cultural_rules_applied': list(cultural_rules.keys())}def _check_cultural_sensitivity(self,content: str,culture: str) -> Dict[str, Any]:"""检查文化敏感性"""sensitive_topics = self.sensitive_topics.get(culture, [])sensitive_topics.extend(self.sensitive_topics.get('general', []))issues = []# 简单的关键词检查(实际应用中应使用更复杂的NLP)for topic in sensitive_topics:if topic in content:issues.append(f"包含敏感话题: {topic}")# 检查数字忌讳cultural_rules = self.cultural_rules.get(culture, {})unlucky_numbers = cultural_rules.get('unlucky_numbers', [])for number in unlucky_numbers:if str(number) in content:issues.append(f"包含不吉利数字: {number}")return {'has_issues': len(issues) > 0,'issues': issues}def _adapt_sensitive_content(self,content: str,culture: str,issues: List[str]) -> str:"""适配敏感内容"""adaptation_prompt = f"""请将以下内容适配到{culture}文化背景,注意以下问题:原内容:{content}发现的文化敏感问题:
{chr(10).join(f"- {issue}" for issue in issues)}请提供文化适配后的内容,确保:
1. 尊重目标文化的价值观
2. 避免文化冲突
3. 保持内容的核心意思
4. 使用适当的表达方式适配后的内容:"""response = self.client.messages.create(model="claude-3-5-sonnet-20241022",max_tokens=1500,messages=[{"role": "user","content": adaptation_prompt}])return response.content[0].text.strip()def _apply_cultural_rules(self,content: str,rules: Dict[str, Any],content_type: str) -> str:"""应用文化规则"""modified_content = content# 应用正式称谓if rules.get('formal_address') and content_type in ['business', 'formal']:modified_content = self._apply_formal_address(modified_content)# 应用间接沟通风格if rules.get('prefer_indirect_communication'):modified_content = self._apply_indirect_style(modified_content)return modified_contentdef _apply_formal_address(self, content: str) -> str:"""应用正式称谓"""# 简化示例:将"你"替换为"您"return content.replace('你', '您')def _apply_indirect_style(self, content: str) -> str:"""应用间接沟通风格"""# 简化示例:软化直接的陈述patterns = [(r'不可以', '可能不太合适'),(r'错误', '可能需要重新考虑'),(r'必须', '建议'),]for pattern, replacement in patterns:content = re.sub(pattern, replacement, content)return content# 使用示例
def create_multicultural_app():client = Anthropic(api_key="your-api-key")# 初始化组件detector = LanguageDetector()processor = MultilingualTextProcessor(client)translator = ContextAwareTranslator(client)adapter = LanguageAdapter(client)cultural_manager = CulturalAdaptationManager(client)# 本地化管理localization = LocalizationManager()localization.load_localizations(LOCALIZATION_DATA)def process_user_input(user_input: str,target_language: Optional[str] = None,target_culture: Optional[str] = None):"""处理用户输入with完整的国际化支持"""# 1. 检测语言detection = detector.detect_language(user_input)detected_lang = detection['language']# 2. 处理多语言输入processed = processor.process_multilingual_input(user_input,target_language)# 3. 生成响应response = adapter.adapt_response(user_input,detected_lang,target_language)# 4. 文化适配if target_culture:cultural_adaptation = cultural_manager.adapt_content(response,target_culture)response = cultural_adaptation['adapted_content']# 5. 本地化UI文本ui_locale = target_language or detected_langwelcome_text = localization.get_text('welcome', ui_locale)return {'detected_language': detected_lang,'response': response,'ui_texts': {'welcome': welcome_text,'help': localization.get_text('help_text', ui_locale)},'cultural_adaptations': target_culture is not None}return process_user_input
最佳实践
1. 国际化架构设计
# 国际化最佳实践
I18N_BEST_PRACTICES = {'language_detection': {'use_multiple_methods': '结合多种检测方法提高准确性','handle_mixed_languages': '处理混合语言文本','confidence_threshold': '设置置信度阈值','fallback_language': '设置默认回退语言'},'translation': {'preserve_context': '保持上下文信息','domain_specific': '使用领域特定的翻译','quality_assurance': '实施翻译质量保证','consistency_check': '检查术语一致性'},'cultural_adaptation': {'research_target_culture': '深入研究目标文化','avoid_stereotypes': '避免文化刻板印象','local_review': '使用本地人员审核','continuous_learning': '持续学习文化差异'},'technical_implementation': {'unicode_support': '完整的Unicode支持','rtl_support': '支持从右到左的语言','date_time_localization': '日期时间本地化','number_formatting': '数字格式本地化'}
}class InternationalizationBestPractices:@staticmethoddef validate_i18n_implementation(app_components: Dict) -> Dict[str, bool]:"""验证国际化实现是否符合最佳实践"""checks = {'has_language_detection': 'detector' in app_components,'has_translation_system': 'translator' in app_components,'has_cultural_adaptation': 'cultural_manager' in app_components,'has_localization': 'localization' in app_components,'supports_rtl': hasattr(app_components.get('adapter'), 'rtl_support'),'has_quality_assessment': 'quality_assessor' in app_components}return checks
这个国际化与本地化系统提供了全面的多语言、多文化支持,帮助开发者构建真正国际化的AI应用。