当前位置: 首页 > news >正文

14.使用GoogleNet/Inception网络进行Fashion-Mnist分类

14.1 GoogleNet网络结构设计

在这里插入图片描述
在这里插入图片描述

import torch
from torch import nn
from torch.nn import functional as F
from torchsummary import summary
class Inception(nn.Module):def __init__(self, in_channels,c1,c2,c3,c4,**kwargs):super(Inception,self).__init__(**kwargs)#第一条路线:1*1的卷积层self.p1_1=nn.Conv2d(in_channels,c1,kernel_size=1)#第二条路线:1*1的卷积层+3*3的卷积层self.p2_1=nn.Conv2d(in_channels,c2[0],kernel_size=1)self.p2_2=nn.Conv2d(c2[0],c2[1],kernel_size=3,padding=1)#第三条路线:1*1的卷积层+5*5的卷积层self.p3_1=nn.Conv2d(in_channels,c3[0],kernel_size=1)self.p3_2=nn.Conv2d(c3[0],c3[1],kernel_size=5,padding=2)#第四条路线:3*3Maxpool+1*1 convsself.p4_1=nn.MaxPool2d(kernel_size=3,stride=1,padding=1)self.p4_2=nn.Conv2d(in_channels,c4,kernel_size=1)def forward(self,x):p1=F.relu(self.p1_1(x))#第一层p2=F.relu(self.p2_2(F.relu(self.p2_1(x))))p3=F.relu(self.p3_2(F.relu(self.p3_1(x))))p4=F.relu(self.p4_2(self.p4_1(x)))ft=torch.concat((p1,p2,p3,p4),dim=1)return ft
#组建googlenet
b1=nn.Sequential(nn.Conv2d(1,64,kernel_size=7,stride=2,padding=3),nn.ReLU(),nn.MaxPool2d(kernel_size=3,stride=2,padding=1))
b2=nn.Sequential(nn.Conv2d(64,64,kernel_size=1),nn.ReLU(),nn.Conv2d(64,192,kernel_size=3,padding=1),nn.ReLU(),nn.MaxPool2d(kernel_size=3,stride=2,padding=1))
b3=nn.Sequential(Inception(192,64,(96,128),(16,32),32),Inception(256,128,(128,192),(32,96),64),nn.MaxPool2d(kernel_size=3,stride=2,padding=1))
b4=nn.Sequential(Inception(480,192,(96,208),(16,48),64),Inception(512,160,(112,224),(24,64),64),Inception(512,128,(128,256),(24,64),64),Inception(512,112,(144,288),(32,64),64),Inception(528,256,(160,320),(32,128),128),nn.MaxPool2d(kernel_size=3,stride=2,padding=1))
b5=nn.Sequential(Inception(832,64,(96,128),(16,32),32),Inception(256,128,(128,192),(32,96),64),nn.AdaptiveAvgPool2d((1,1)),nn.Flatten())
device=torch.device("cuda" if torch.cuda.is_available() else 'cpu')
model=nn.Sequential(b1,b2,b3,b4,b5,nn.Linear(480,10)).to(device)
summary(model,input_size=(1,224,224),batch_size=1)

在这里插入图片描述

14.2 GoogleNet网络实现Fashion-Mnist分类

import torch
import torchvision
from torch import nn
import matplotlib.pyplot as plt
from torchvision.transforms import transforms
from torch.utils.data import DataLoader
from tqdm import tqdm
from sklearn.metrics import accuracy_score
from torch.nn import functional as F
plt.rcParams['font.family']=['Times New Roman']
class Reshape(torch.nn.Module):def forward(self,x):return x.view(-1,1,28,28)#[bs,1,28,28]
def plot_metrics(train_loss_list, train_acc_list, test_acc_list, title='Training Curve'):epochs = range(1, len(train_loss_list) + 1)plt.figure(figsize=(4, 3))plt.plot(epochs, train_loss_list, label='Train Loss')plt.plot(epochs, train_acc_list, label='Train Acc',linestyle='--')plt.plot(epochs, test_acc_list, label='Test Acc', linestyle='--')plt.xlabel('Epoch')plt.ylabel('Value')plt.title(title)plt.legend()plt.grid(True)plt.tight_layout()plt.show()
def train_model(model,train_data,test_data,num_epochs):train_loss_list = []train_acc_list = []test_acc_list = []for epoch in range(num_epochs):total_loss=0total_acc_sample=0total_samples=0loop=tqdm(train_data,desc=f"EPOCHS[{epoch+1}/{num_epochs}]")for X,y in loop:#X=X.reshape(X.shape[0],-1)#print(X.shape)X=X.to(device)y=y.to(device)y_hat=model(X)loss=CEloss(y_hat,y)optimizer.zero_grad()loss.backward()optimizer.step()#loss累加total_loss+=loss.item()*X.shape[0]y_pred=y_hat.argmax(dim=1).detach().cpu().numpy()y_true=y.detach().cpu().numpy()total_acc_sample+=accuracy_score(y_pred,y_true)*X.shape[0]#保存样本数total_samples+=X.shape[0]test_acc_samples=0test_samples=0for X,y in test_data:X=X.to(device)y=y.to(device)#X=X.reshape(X.shape[0],-1)y_hat=model(X)y_pred=y_hat.argmax(dim=1).detach().cpu().numpy()y_true=y.detach().cpu().numpy()test_acc_samples+=accuracy_score(y_pred,y_true)*X.shape[0]#保存样本数test_samples+=X.shape[0]avg_train_loss=total_loss/total_samplesavg_train_acc=total_acc_sample/total_samplesavg_test_acc=test_acc_samples/test_samplestrain_loss_list.append(avg_train_loss)train_acc_list.append(avg_train_acc)test_acc_list.append(avg_test_acc)print(f"Epoch {epoch+1}: Loss: {avg_train_loss:.4f},Trian Accuracy: {avg_train_acc:.4f},test Accuracy: {avg_test_acc:.4f}")plot_metrics(train_loss_list, train_acc_list, test_acc_list)return model
def init_weights(m):if type(m) == nn.Linear or type(m) == nn.Conv2d:nn.init.xavier_uniform_(m.weight)
class Inception(nn.Module):def __init__(self, in_channels,c1,c2,c3,c4,**kwargs):super(Inception,self).__init__(**kwargs)#第一条路线:1*1的卷积层self.p1_1=nn.Conv2d(in_channels,c1,kernel_size=1)#第二条路线:1*1的卷积层+3*3的卷积层self.p2_1=nn.Conv2d(in_channels,c2[0],kernel_size=1)self.p2_2=nn.Conv2d(c2[0],c2[1],kernel_size=3,padding=1)#第三条路线:1*1的卷积层+5*5的卷积层self.p3_1=nn.Conv2d(in_channels,c3[0],kernel_size=1)self.p3_2=nn.Conv2d(c3[0],c3[1],kernel_size=5,padding=2)#第四条路线:3*3Maxpool+1*1 convsself.p4_1=nn.MaxPool2d(kernel_size=3,stride=1,padding=1)self.p4_2=nn.Conv2d(in_channels,c4,kernel_size=1)def forward(self,x):p1=F.relu(self.p1_1(x))#第一层p2=F.relu(self.p2_2(F.relu(self.p2_1(x))))p3=F.relu(self.p3_2(F.relu(self.p3_1(x))))p4=F.relu(self.p4_2(self.p4_1(x)))ft=torch.concat((p1,p2,p3,p4),dim=1)return ft
#组建googlenet
b1=nn.Sequential(nn.Conv2d(1,64,kernel_size=7,stride=2,padding=3),nn.ReLU(),nn.MaxPool2d(kernel_size=3,stride=2,padding=1))
b2=nn.Sequential(nn.Conv2d(64,64,kernel_size=1),nn.ReLU(),nn.Conv2d(64,192,kernel_size=3,padding=1),nn.ReLU(),nn.MaxPool2d(kernel_size=3,stride=2,padding=1))
b3=nn.Sequential(Inception(192,64,(96,128),(16,32),32),Inception(256,128,(128,192),(32,96),64),nn.MaxPool2d(kernel_size=3,stride=2,padding=1))
b4=nn.Sequential(Inception(480,192,(96,208),(16,48),64),Inception(512,160,(112,224),(24,64),64),Inception(512,128,(128,256),(24,64),64),Inception(512,112,(144,288),(32,64),64),Inception(528,256,(160,320),(32,128),128),nn.MaxPool2d(kernel_size=3,stride=2,padding=1))
b5=nn.Sequential(Inception(832,64,(96,128),(16,32),32),Inception(256,128,(128,192),(32,96),64),nn.AdaptiveAvgPool2d((1,1)),nn.Flatten())
device=torch.device("cuda:1" if torch.cuda.is_available() else 'cpu')
model=nn.Sequential(b1,b2,b3,b4,b5,nn.Linear(480,10)).to(device)
transforms=transforms.Compose([transforms.Resize(96),transforms.ToTensor(),transforms.Normalize((0.5,),(0.5,))])#第一个是mean,第二个是std
train_img=torchvision.datasets.FashionMNIST(root="./data",train=True,transform=transforms,download=True)
test_img=torchvision.datasets.FashionMNIST(root="./data",train=False,transform=transforms,download=True)
train_data=DataLoader(train_img,batch_size=128,num_workers=4,shuffle=True)
test_data=DataLoader(test_img,batch_size=128,num_workers=4,shuffle=False)
################################################################################################################
model.apply(init_weights)
optimizer=torch.optim.SGD(model.parameters(),lr=0.01,momentum=0.9)
CEloss=nn.CrossEntropyLoss()
model=train_model(model,train_data,test_data,num_epochs=15)
################################################################################################################

在这里插入图片描述

http://www.dtcms.com/a/278095.html

相关文章:

  • docker基础部署
  • ID生成策略
  • 在新版本的微信开发者工具中使用npm包
  • 用信号量实现进程互斥,进程同步,进程前驱关系(操作系统os)
  • DOS下EXE文件的分析 <1>
  • MacBook Air通过VMware Fusion Pro安装Win11
  • 从代码学习深度强化学习 - DDPG PyTorch版
  • [Python 基础课程]列表
  • 【DataLoader的使用】
  • 力扣 hot100 Day43
  • Actor-Critic重要性采样原理
  • java valueOf方法
  • 【算法】贪心算法入门
  • SwiftUI 7 新 WebView:金蛇出洞,网页江湖换新天
  • 一些git命令
  • 若依框架集成阿里云OSS实现文件上传优化
  • 对于muduo我自己的理解
  • UniHttp生命周期钩子与公共参数实战:打造智能天气接口客户端
  • flask校园学科竞赛管理系统-计算机毕业设计源码12876
  • SPSSPRO:数据分析市场SaaS挑战者的战略分析
  • JAVA并发——什么是AQS?
  • Mapbox GL初探
  • 【unitrix】 5.0 第二套类型级二进制数基本结构体(types2.rs)
  • 16.使用ResNet网络进行Fashion-Mnist分类
  • css如何同时给元素设置背景和背景图?
  • 每日算法刷题Day47:7.13:leetcode 复习完滑动窗口一章,用时2h30min
  • 说实话,统计分析用Python这5个第三方库就够了
  • AutoLabor-ROS-Python 学习记录——第一章 ROS概述与环境搭建
  • PortsSwiggerLab: SSRF with blacklist-based input filter
  • JS进阶-day1 作用域解构箭头函数