当前位置: 首页 > news >正文

PyTorch多层感知机模型构建与MNIST分类训练

冲冲冲😊
here😊

文章目录

  • PyTorch多层感知机模型构建与MNIST分类训练笔记
    • 🎯 1. 任务概述
    • ⚙️ 2. 环境设置
      • 2.1 导入必要库
      • 2.2 GPU配置
    • 🧠 3. 模型构建
      • 3.1 模型定义关键点
      • 3.2 损失函数选择
      • 3.3 模型初始化与设备选择
    • 🔧 4. 优化器配置
      • 4.1 随机梯度下降优化器
    • 🔄 5. 训练循环实现
      • 5.1 训练函数设计
      • 5.2 测试函数设计
    • 📦 6. 数据准备
      • 6.1 加载MNIST数据集
    • 🚀 7. 训练执行
      • 7.1 训练循环主体
      • 7.2 训练过程输出(部分)
    • 📊 8. 结果可视化
      • 8.1 损失曲线绘制
      • 8.2 准确率曲线绘制

PyTorch多层感知机模型构建与MNIST分类训练笔记

🎯 1. 任务概述

解决MNIST手写数字分类问题,创建一个简单的多层感知机(MLP)模型

  • 使用torch.nn.Linear层构建模型
  • 使用ReLU作为激活函数
  • 包含两个全连接隐藏层(120和84个神经元)和输出层(10个神经元对应10个数字类别)
  • 模型输入为展平后的28×28=784像素图像

⚙️ 2. 环境设置

2.1 导入必要库

import torch
from torch import nn
import os

2.2 GPU配置

# os.environ["CUDA_VISIBLE_DEVICES"] = "3,4,6"  # 只使用空闲的GPU

🧠 3. 模型构建

3.1 模型定义关键点

class Model(nn.Module):def __init__(self):super().__init__()# 第一层输入展平后的特征长度28乘28,创建120个神经元self.liner_1 = nn.Linear(28*28, 120)# 第二层输入的是前一层的输出,创建84个神经元self.liner_2 = nn.Linear(120, 84)# 输出层接受第二层的输入84,输出分类个数10self.liner_3 = nn.Linear(84, 10)def forward(self, input):x = input.view(-1, 28*28)  # 将输入展平为二维(1,28,28)->(28*28)x = torch.relu(self.liner_1(x))x = torch.relu(self.liner_2(x))x = self.liner_3(x)return x

📝 模型结构说明

  1. 输入层:将28×28图像展平为784维向量
  2. 隐藏层1:120个神经元,使用ReLU激活
  3. 隐藏层2:84个神经元,使用ReLU激活
  4. 输出层:10个神经元对应10个数字类别

3.2 损失函数选择

loss_fn = nn.CrossEntropyLoss()  # 交叉熵损失函数
'''
注意两个参数
1. weight: 各类别的权重(处理不平衡数据集)
2. ignore_index: 忽略特定类别的索引
另外,它要求实际类别为数值编码,而不是独热编码
'''

🔍 为什么选择交叉熵损失?

  • 适用于多分类问题
  • 内部集成了Softmax计算,简化实现流程
  • 对错误分类有较强的惩罚

3.3 模型初始化与设备选择

device = "cuda" if torch.cuda.is_available() else "cpu"
model = Model().to(device)
# print(device)  # 可选:打印使用的设备

💡 GPU加速提示
使用.to(device)将模型移动到GPU可显著加快训练速度,特别是对于大模型和大数据集

🔧 4. 优化器配置

4.1 随机梯度下降优化器

optimizer = torch.optim.SGD(model.parameters(), lr=0.005)

🔧 关键参数解析

  • params: 需要优化的模型参数(通常为model.parameters()
  • lr=0.005: 学习率,控制参数更新步长的超参数
  • 其他可选参数:momentum(动量),weight_decay(L2正则化)

🔄 5. 训练循环实现

5.1 训练函数设计

def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)  # 获取当前数据集样本总数量num_batches = len(dataloader)   # 获取当前data loader总批次数# train_loss用于累计所有批次的损失之和, correct用于累计预测正确的样本总数train_loss, correct = 0, 0for X, y in dataloader:X, y = X.to(device), y.to(device)# 进行预测,并计算当前批次的损失pred = model(X)loss = loss_fn(pred, y)# 利用反向传播算法,根据损失优化模型参数optimizer.zero_grad()   # 先将梯度清零loss.backward()          # 损失反向传播,计算模型参数梯度optimizer.step()         # 根据梯度优化参数with torch.no_grad():# correct用于累计预测正确的样本总数correct += (pred.argmax(1) == y).type(torch.float).sum().item()# train_loss用于累计所有批次的损失之和train_loss += loss.item()# train_loss 是所有批次的损失之和,所以计算全部样本的平均损失时需要除以总的批次数train_loss /= num_batches# correct 是预测正确的样本总数,若计算整个epoch总体正确率,需要除以样本总数量correct /= sizereturn train_loss, correct

5.2 测试函数设计

def test(dataloader, model):size = len(dataloader.dataset)num_batches = len(dataloader)test_loss, correct = 0, 0with torch.no_grad():for X, y in dataloader:X, y = X.to(device), y.to(device)pred = model(X)test_loss += loss_fn(pred, y).item()correct += (pred.argmax(1) == y).type(torch.float).sum().item()test_loss /= num_batchescorrect /= sizereturn test_loss, correct

📊 数据加载器相关方法区别

方法返回内容适用场景
len(dataset)数据集总样本数(如100)数据统计、划分
len(dataloader)总批次数(如4)训练循环控制
len(dataloader.dataset)等同于 len(dataset)需要访问原始数据时

📦 6. 数据准备

6.1 加载MNIST数据集

import torchvision
from torchvision.transforms import ToTensortrain_ds = torchvision.datasets.MNIST("data/", train=True, transform=ToTensor(), download=True)
test_ds = torchvision.datasets.MNIST("data/", train=False, transform=ToTensor(), download=True)train_dl = torch.utils.data.DataLoader(train_ds, batch_size=64, shuffle=True)
test_dl = torch.utils.data.DataLoader(test_ds, batch_size=64)

🚀 7. 训练执行

7.1 训练循环主体

# 对全部的数据集训练50个epoch(一个epoch表示对全部数据训练一遍)
epochs = 50 
train_loss, train_acc = [], []
test_loss, test_acc = [], []for epoch in range(epochs):# 调用train()函数训练epoch_loss, epoch_acc = train(train_dl, model, loss_fn, optimizer)# 调用test()函数测试epoch_test_loss, epoch_test_acc = test(test_dl, model)train_loss.append(epoch_loss)train_acc.append(epoch_acc)test_loss.append(epoch_test_loss)test_acc.append(epoch_test_acc)# 定义一个打印模板template = ("epoch:{:2d},train_loss:{:.6f},train_acc:{:.1f}%,""test_loss:{:.5f},test_acc:{:.1f}%")print(template.format(epoch, epoch_loss, epoch_acc*100, epoch_test_loss, epoch_test_acc*100))print("Done")

7.2 训练过程输出(部分)

epoch: 0,train_loss:2.157364,train_acc:46.7%,test_loss:1.83506,test_acc:63.7%
epoch: 1,train_loss:1.222660,train_acc:74.3%,test_loss:0.74291,test_acc:81.8%
epoch: 2,train_loss:0.612381,train_acc:84.0%,test_loss:0.49773,test_acc:86.3%
...
epoch:48,train_loss:0.110716,train_acc:96.9%,test_loss:0.12003,test_acc:96.4%
epoch:49,train_loss:0.108877,train_acc:97.0%,test_loss:0.11783,test_acc:96.5%
Done

📈 训练趋势分析

  • 初始准确率:46.7%(训练集),63.7%(测试集)
  • 最终准确率:97.0%(训练集),96.5%(测试集)
  • 过拟合现象轻微:训练集和测试集性能差距仅0.5%

📊 8. 结果可视化

8.1 损失曲线绘制

import matplotlib.pyplot as pltplt.plot(range(1, epochs+1), train_loss, label="train_loss")
plt.plot(range(1, epochs+1), test_loss, label="test_loss", ls="--")
plt.xlabel("epoch")
plt.legend()
plt.show()

注释:损失曲线显示训练初期损失快速下降,后期趋于平稳

8.2 准确率曲线绘制

plt.plot(range(1, epochs+1), train_acc, label="train_acc")
plt.plot(range(1, epochs+1), test_acc, label="test_acc")
plt.xlabel("epoch")
plt.legend()
plt.show()

注释:准确率曲线稳步上升,最终达到96.5%的测试准确率

http://www.dtcms.com/a/275621.html

相关文章:

  • 【BurpSuite 2025最新版插件开发】基础篇10(完):日志记录与调试
  • 请求服务端获取broker的机房归属信息异常
  • 剑指offer56_数组中唯一只出现一次的数字
  • JavaScript加强篇——第七章 浏览器对象与存储要点
  • NLP:RNN文本生成案例分享
  • 关于 验证码系统 详解
  • S7-200 SMART PLC:硬件、原理及接线特点全解析
  • Transformer基础
  • Linux驱动09 --- 环境搭建
  • 零基础 “入坑” Java--- 九、类和对象(二)
  • 【YOLOv8-obb部署至RK3588】模型训练→转换RKNN→开发板部署
  • 详解梯度消失和梯度爆炸(反向传播)?
  • 2025年亚太杯(中文赛项)数学建模B题【疾病的预测与大数据分析】原创论文讲解(含完整python代码)
  • 【Java入门到精通】(三)Java基础语法(下)
  • # win11 连接共享打印机报错:0x00000040 或者 0x00000709或者 x0000011b 的解决方法
  • ubuntu系统宝塔进程守护管理器开机启动失败问题
  • 设计模式:单一职责原则
  • 注解驱动的知识中枢:MCPServer赋能AI业务的技术架构与实践
  • Mastercam 2026中文版网盘资源下载与安装教程共享
  • JAVA--双亲委派机制
  • 历史数据分析——云南白药
  • Matplotlib 全面使用指南 -- 紧密布局指南 Tight layout guide
  • Leetcode力扣解题记录--第3题(滑动窗口)
  • Python 实战:构建 Git 自动化助手
  • pgsql模板是什么?
  • 深入理解设计模式:建造者模式详解
  • AI产品经理面试宝典第12天:AI产品经理的思维与转型路径面试题与答法
  • 分音塔科技(BABEL Technology) 的公司背景、股权构成、产品类型及技术能力的全方位解读
  • LRU缓存机制完全实战:链表的工程落地与面试通关
  • 杭州乐湾科技有限公司的背景、产品体系与技术能力的全方位深度分析