当前位置: 首页 > news >正文

分类预测 | MFO-LSSVM飞蛾扑火算法优化最小二乘支持向量机多特征分类预测Matlab实现

分类预测 | MFO-LSSVM飞蛾扑火算法优化最小二乘支持向量机多特征分类预测Matlab实现

目录

    • 分类预测 | MFO-LSSVM飞蛾扑火算法优化最小二乘支持向量机多特征分类预测Matlab实现
      • 分类效果
      • 基本介绍
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

1.Matlab实现MFO-LSSVM飞蛾扑火算法优化最小二乘支持向量机多特征分类预测,运行环境Matlab2018b及以上;

2.输入12个特征,输出分4类,可视化展示分类准确率,可在下载区获取数据和程序内容。

3.算法优化LSSVM参数为:sig,gamma。

4.excel数据集,main为主程序,其他为函数文件,无需运行,分类效果如下:

注:程序和数据放在一个文件夹。

程序设计

  • 完整程序和数据获取方式资源处直接下载MFO-LSSVM飞蛾扑火算法优化最小二乘支持向量机多特征分类预测Matlab实现(完整源码和数据)。
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集%
P_train = res(1: 250, 1: 12)';
T_train = res(1: 250, 13)';
M = size(P_train, 2);

P_test = res(251: end, 1: 12)';
T_test = res(251: end, 13)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train,0,1);
p_test = mapminmax('apply',P_test,ps_input);
t_train = T_train;
t_test  = T_test;

%% LS参数设置
type        = 'c';             % 模型类型 分类
kernel_type = 'RBF_kernel';    % 线性核函数
codefct     = 'code_OneVsOne'; % 一对一编码分类
fun = @getObjValue;  % 目标函数
dim = 2;             % 优化参数个数
ub  = [300, 300];  % 优化参数目标上限
lb  = [1, 1];   % 优化参数目标下限

pop = 8;             % 数量
Max_iteration = 20; % 最大迭代次数   


c = Best_pos(1);  
g = Best_pos(2);

%% 编码
[t_train,codebook,old_codebook] = code(t_train,codefct);

%% 建立模型
model = initlssvm(p_train,t_train,type,c,g,kernel_type,codefct); %SSA

%% 训练模型
model = trainlssvm(model);

%% 测试模型
t_sim1 = simlssvm(model,p_train);
t_sim2 = simlssvm(model,p_test); 



T_sim1 = T_sim1(index_1);
T_sim2 = T_sim2(index_2);
%% 性能评价
error1 = sum((T_sim1' == T_train))/M * 100 ;
error2 = sum((T_sim2' == T_test))/N * 100 ;

%% 优化曲线
figure
plot(curve, 'linewidth',1.5);
title('-LSSVM')
xlabel('The number of iterations')
ylabel('Fitness')
grid on;
%%  绘图
figure
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值', '-LSSVM预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['准确率=' num2str(error1) '%']};
title(string)
xlim([1, M])
grid

figure
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值', '-LSSVM预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['准确率=' num2str(error2) '%']};
title(string)
xlim([1, N])
grid

%%  混淆矩阵
figure
cm = confusionchart(T_train, T_sim1);
cm.Title = 'Confusion Matrix for Train Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';
    
figure
cm = confusionchart(T_test, T_sim2);
cm.Title = 'Confusion Matrix for Test Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

相关文章:

  • swupdate升级文件系统内文件与分区的差异
  • 高德地图android sdk(备忘)
  • 科普:“Docker Desktop”和“Docker”以及“WSL”
  • Windows桌面系统管理6:计算机故障排查
  • 组合总和力扣--39
  • 如何安装虚拟机cenos7系统
  • Unity 聊天气泡根据文本内容适配
  • 解锁 AIoT 无限可能,乐鑫邀您共赴 Embedded World 2025
  • 当使用vcpkg安装的qt5时,在VS调用出现libcrypto-*-x64.dll不是有效路径时
  • Design Compiler:边界优化(Boundary Optimization)
  • nginx ngx_http_module(7) 指令详解
  • 从函数到神经网络
  • 解锁机器学习核心算法 | K-平均:揭开K-平均算法的神秘面纱
  • Unity性能优化个人经验总结(不定期更新)
  • 如何在本机上模拟IP地址
  • 金融交易算法单介绍
  • 在系统中如何集成限流组件单机和集群
  • 车载音频配置(二)
  • 基于javaweb的SpringBoot校园二手商品系统设计和实现(源码+文档+部署讲解)
  • 使用 NVM 随意切换 Node.js 版本
  • 印巴战火LIVE丨“快速接近战争状态”?印度袭击巴军事基地,巴启动反制军事行动
  • 上海“电子支付费率成本为0”背后:金融服务不仅“快”和“省”,更有“稳”和“准”
  • 数理+AI+工程,上海交大将开首届“笛卡尔班”招生约20名
  • 国家主席习近平在莫斯科出席红场阅兵式
  • 绿城约13.93亿元竞得西安浐灞国际港港务片区地块,区内土地楼面单价首次冲破万元
  • 公元1057年:千年龙虎榜到底有多厉害?