【黑马点评】(二)缓存
(一) 什么是缓存
(二)添加商户缓存
控制层
/*** 根据id查询商铺信息* @param id 商铺id* @return 商铺详情数据*/@GetMapping("/{id}")public Result queryShopById(@PathVariable("id") Long id) {return shopService.queryById(id);}
service层
public interface IShopService extends IService<Shop> {Result queryById(Long id);
}@Service
public class ShopServiceImpl extends ServiceImpl<ShopMapper, Shop> implements IShopService{@Resourceprivate StringRedisTemplate stringRedisTemplate;@Overridepublic Result queryById(Long id) {String key = CACHE_SHOP_KEY + id;// 1.从redis查询缓存String shopJson = stringRedisTemplate.opsForValue().get(key);// 2.判断是否存在if(StrUtil.isNotBlank(shopJson)){// 3.存在,直接返回Shop shop = JSONUtil.toBean(shopJson, Shop.class);return Result.ok(shop);}// 4.不存在,查询数据库Shop shop = getById(id);if(shop == null){return Result.fail("店铺不存在:!");}// 5.存在, 存入redisstringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(shop));return Result.ok(shop);}
}
测试效果:
(三)缓存练习题分析
自行实现即可,不难
(四)缓存更新策略
先删除缓存,在操作数据库的正常情况(缓存 数据库 一开始都是10)
产生不一致情况:
先操作数据库,在删除缓存的正常情况:
产生不一致情况:
方案二先操作数据库,在删除缓存比方案一概率更低,因为需要线程1恰好查询缓存的时候缓存是失效的,同时在准备写入缓存的很短的时间需要有线程二进来更新数据库,删除缓存,需要这两个条件同时成立。
(五)实现商铺缓存与数据库的双写一致
这里更新接口字段需要去掉updatetime和createtime,因为会报错,后续在找办法解决,子需要自定义配置时间就行,多个配置类。
org.springframework.http.converter.HttpMessageNotReadableException: JSON parse error: raw timestamp (1642066339000) not allowed for java.time.LocalDateTime
: need additional information such as an offset or time-zone (see class Javadocs); nested exception is com.fasterxml.jackson.databind.exc.MismatchedInputException: raw timestamp (1642066339000) not allowed for java.time.LocalDateTime
: need additional information such as an offset or time-zone (see class Javadocs)
at [Source: (PushbackInputStream); line: 7, column: 19] (through reference chain: com.hmdp.entity.Shop[“updateTime”])
当执行更新店铺时,会更新数据库,在删除缓存
当再次查询时数据库时,会自动更新缓存
修改代码如下,添加缓存时候设置过期时间,然后在更新数据库时删除缓存。
@Overridepublic Result queryById(Long id) {String key = CACHE_SHOP_KEY + id;// 1.从redis查询缓存String shopJson = stringRedisTemplate.opsForValue().get(key);// 2.判断是否存在if(StrUtil.isNotBlank(shopJson)){// 3.存在,直接返回Shop shop = JSONUtil.toBean(shopJson, Shop.class);return Result.ok(shop);}// 4.不存在,查询数据库Shop shop = getById(id);if(shop == null){return Result.fail("店铺不存在:!");}// 5.存在, 存入redisstringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(shop),CACHE_SHOP_TTL, TimeUnit.MINUTES);return Result.ok(shop);}@Override@Transactionalpublic Result update(Shop shop) {Long id = shop.getId();if(id == null){return Result.fail("店铺id不能为空");}// 1. 更新数据库updateById(shop);// 2. 删除缓存stringRedisTemplate.delete(CACHE_SHOP_KEY + id);return Result.ok();}
(六)缓存穿透的解决思路
(七)编码解决商品查询的缓存穿透问题
@Overridepublic Result queryById(Long id) {String key = CACHE_SHOP_KEY + id;// 1.从redis查询缓存String shopJson = stringRedisTemplate.opsForValue().get(key);// 2.判断是否存在if(StrUtil.isNotBlank(shopJson)){// 3.存在,直接返回Shop shop = JSONUtil.toBean(shopJson, Shop.class);return Result.ok(shop);}// 判断命中的是否是空值if(shopJson != null){// 返回错误信息return Result.fail("店铺不存在");}// 4.不存在,查询数据库Shop shop = getById(id);if(shop == null){// 空值写入redis 2分钟ttlstringRedisTemplate.opsForValue().set(key,"",CACHE_NULL_TTL, TimeUnit.MINUTES);return Result.fail("店铺信息不存在!");}// 5.存在, 存入redisstringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(shop),CACHE_SHOP_TTL, TimeUnit.MINUTES);return Result.ok(shop);}
第一次客户端发起请求查询店铺为0的数据时,应该返回店铺信息不存在,同时将空值写入缓存
此时redis中应该存储0的空值
当再次查询时,不会在请求到数据库当中,会查询缓存返回。
(八)缓存雪崩问题以及解决思路
(九)缓存击穿问题以及解决方案
(十)利用互斥锁解决缓存击穿问题
封装保存缓存穿透的代码以及封装缓存击穿的代码,实现setnx方法以及释放锁
// 缓存穿透
// Shop shop = queryWithPassThrough(id);// 互斥锁解决缓存击穿Shop shop = queryWithMutex(id);if(shop == null){return Result.fail("店铺不存在");}// 返回return Result.ok(shop);}public Shop queryWithPassThrough(Long id){String key = CACHE_SHOP_KEY + id;// 1.从redis查询缓存String shopJson = stringRedisTemplate.opsForValue().get(key);// 2.判断是否存在if(StrUtil.isNotBlank(shopJson)){// 3.存在,直接返回return JSONUtil.toBean(shopJson, Shop.class);}// 判断命中的是否是空值if(shopJson != null){// 返回错误信息return null;}// 4.不存在,查询数据库Shop shop = getById(id);if(shop == null){// 空值写入redis 2分钟ttlstringRedisTemplate.opsForValue().set(key,"",CACHE_NULL_TTL, TimeUnit.MINUTES);return null;}// 5.存在, 存入redisstringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(shop),CACHE_SHOP_TTL, TimeUnit.MINUTES);return shop;}public Shop queryWithMutex(Long id){String key = CACHE_SHOP_KEY + id;// 1.从redis查询缓存String shopJson = stringRedisTemplate.opsForValue().get(key);// 2.判断是否存在if(StrUtil.isNotBlank(shopJson)){// 3.存在,直接返回return JSONUtil.toBean(shopJson, Shop.class);}// 判断命中的是否是空值if(shopJson != null){// 返回错误信息return null;}// 4实现缓存重建 (ctrl + alt + T 快捷try-catch)// 4.1 获取互斥锁String lockKey = "lock:shop" + id;Shop shop = null;try {boolean isLock = tryLock(lockKey);// 4.2 判断是否成功if(!isLock){// 4.3 失败则休眠重试Thread.sleep(50);return queryWithMutex(id);}// 4.4 成功,根据id查询数据库shop = getById(id);// 模拟重建延时Thread.sleep(200);// 5 不存在,返回错误if(shop == null){// 空值写入redis 2分钟ttlstringRedisTemplate.opsForValue().set(key,"",CACHE_NULL_TTL, TimeUnit.MINUTES);return null;}// 6.存在, 存入redisstringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(shop),CACHE_SHOP_TTL, TimeUnit.MINUTES);} catch (InterruptedException e) {e.printStackTrace();} finally {// 7.释放互斥锁unlock(key);}// 8.返回return shop;}private boolean tryLock(String key){Boolean flag = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.SECONDS);return BooleanUtil.isTrue(flag);}private void unlock(String key){stringRedisTemplate.delete(key);}
自己测试的指标,为啥还有一些请求失败的呢,不过确实只查了一次数据库,缓存中也被更新了
(十)利用逻辑过期解决缓存击穿问题
缓存预热
public void saveShop2Redis(Long id, Long expireSeconds){// 1. 查询店铺数据Shop shop = getById(id);// 2. 封装逻辑过期时间RedisData redisData = new RedisData();redisData.setData(shop);redisData.setExpireTime(LocalDateTime.now().plusSeconds(expireSeconds));// 3. 写入redisstringRedisTemplate.opsForValue().set(CACHE_SHOP_KEY + id, JSONUtil.toJsonStr(redisData));}
@Data
public class RedisData {private LocalDateTime expireTime;private Object data;
}
测试插入一条数据到redis
@SpringBootTest
class HmDianPingApplicationTests {@Resourceprivate ShopServiceImpl shopService;@Testvoid testSaveShop(){shopService.saveShop2Redis(1L, 10L);}
}
逻辑过期代码
private final static ExecutorService CACHE_REBUILD_EXECUTOR = Executors.newFixedThreadPool(10);public Shop queryWithLogicalExpire(Long id){String key = CACHE_SHOP_KEY + id;// 1.从redis查询缓存String shopJson = stringRedisTemplate.opsForValue().get(key);// 2.判断是否存在if(StrUtil.isBlank(shopJson)){// 3.未命中return null;}// 命中需要判断过期时间RedisData redisData = JSONUtil.toBean(shopJson, RedisData.class);JSONObject data = (JSONObject) redisData.getData();Shop shop = JSONUtil.toBean(data, Shop.class);LocalDateTime expireTime = redisData.getExpireTime();if(expireTime.isAfter(LocalDateTime.now())){// 过期时间是否在当前时间之后// 未过期,直接返回数据return shop;}// 过期,重建缓存String lockKey = LOCK_SHOP_KEY + id;boolean isLock = tryLock(lockKey);if(isLock){CACHE_REBUILD_EXECUTOR.submit(() -> {// 重建缓存try {this.saveShop2Redis(id, 20L);} catch (Exception e) {throw new RuntimeException(e);}finally {// 释放锁unlock(lockKey);}});}return shop;}
public void saveShop2Redis(Long id, Long expireSeconds) throws InterruptedException {// 1. 查询店铺数据Shop shop = getById(id);// 模拟延迟Thread.sleep(200);// 2. 封装逻辑过期时间RedisData redisData = new RedisData();redisData.setData(shop);redisData.setExpireTime(LocalDateTime.now().plusSeconds(expireSeconds));// 3. 写入redisstringRedisTemplate.opsForValue().set(CACHE_SHOP_KEY + id, JSONUtil.toJsonStr(redisData));}
将数据库id为1的改为108茶餐厅,redis之前预热的是105茶餐厅。进行压测
(十二)封装Redis工具类
@Slf4j
@Component
public class CacheUtil {private final StringRedisTemplate stringRedisTemplate;public CacheUtil(StringRedisTemplate stringRedisTemplate) {this.stringRedisTemplate = stringRedisTemplate;}public void set(String key, Object value, Long time, TimeUnit unit){stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(value), time, unit);}public void setWithLogicalExpire(String key, Object value, Long time, TimeUnit unit){RedisData redisData = new RedisData();redisData.setData(value);redisData.setExpireTime(LocalDateTime.now().plusSeconds(unit.toSeconds(time)));stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(redisData), time, unit);}public <R, ID> R queryWithPassThrough(String keyPrefix, ID id, Class<R> type, Function<ID,R> dbFallback,Long time, TimeUnit unit){String key = keyPrefix + id;// 1.从redis查询缓存String json = stringRedisTemplate.opsForValue().get(key);// 2.判断是否存在if(StrUtil.isNotBlank(json)){// 3.存在,直接返回return JSONUtil.toBean(json, type);}// 判断命中的是否是空值if(json != null){// 返回错误信息return null;}// 4.不存在,查询数据库R r = dbFallback.apply(id);if(r == null){// 空值写入redis 2分钟ttlstringRedisTemplate.opsForValue().set(key,"",CACHE_NULL_TTL, TimeUnit.MINUTES);return null;}// 5.存在, 存入redisthis.set(key,r,time,unit);return r;}private final static ExecutorService CACHE_REBUILD_EXECUTOR = Executors.newFixedThreadPool(10);public <R, ID> R queryWithLogicalExpire(String keyPrefix, ID id, Class<R> type, Function<ID,R> dbFallback,Long time, TimeUnit unit){String key = keyPrefix + id;// 1.从redis查询缓存String json = stringRedisTemplate.opsForValue().get(key);// 2.判断是否存在if(StrUtil.isBlank(json)){// 3.未命中return null;}// 命中需要判断过期时间RedisData redisData = JSONUtil.toBean(json, RedisData.class);R r = JSONUtil.toBean((JSONObject) redisData.getData(), type);LocalDateTime expireTime = redisData.getExpireTime();if(expireTime.isAfter(LocalDateTime.now())){// 过期时间是否在当前时间之后// 未过期,直接返回数据return r;}// 过期,重建缓存String lockKey = LOCK_SHOP_KEY + id;boolean isLock = tryLock(lockKey);if(isLock){CACHE_REBUILD_EXECUTOR.submit(() -> {// 重建缓存try {// 查询数据库R r1 = dbFallback.apply(id);// 写入redisthis.setWithLogicalExpire(key, r1, time, unit);} catch (Exception e) {throw new RuntimeException(e);}finally {// 释放锁unlock(lockKey);}});}return r;}private boolean tryLock(String key){Boolean flag = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.SECONDS);return BooleanUtil.isTrue(flag);}private void unlock(String key){stringRedisTemplate.delete(key);}
}