Flink ClickHouse 连接器:实现 Flink 与 ClickHouse 无缝对接
引言
在大数据处理领域,Apache Flink 是一款强大的流处理和批处理框架,而 ClickHouse 则是一个高性能的列式数据库,专为在线分析处理(OLAP)场景设计。Flink ClickHouse 连接器为这两者之间搭建了一座桥梁,使得用户能够在 Flink 中方便地与 ClickHouse 数据库进行交互,实现数据的读写操作。本文将详细介绍 Flink ClickHouse 连接器的相关内容,包括其特点、使用方法、依赖配置等。
项目概述
Flink ClickHouse 连接器是一个用于 Flink SQL 的连接器,它基于 ClickHouse JDBC 实现,允许用户在 Flink 中直接操作 ClickHouse 数据库。目前,该项目支持 Source/Sink Table
和 Flink Catalog
功能。如果你在使用过程中遇到任何问题,可以在项目仓库中创建 issue,同时也欢迎为项目贡献代码。
主要特点
- 丰富的功能支持:支持作为数据源和数据接收器,并且可以通过 Flink Catalog 进行管理。
- 配置灵活:提供了多种配置选项,如批量大小、刷新间隔、最大重试次数等,方便用户根据实际需求进行调整。
项目使用前准备
依赖配置
该项目尚未发布到 Maven 中央仓库,因此在使用之前,需要将其部署或安装到自己的仓库中。具体步骤如下:
# 克隆项目
git clone https://github.com/itinycheng/flink-connector-clickhouse.git# 进入项目目录
cd flink-connector-clickhouse/# 显示远程分支
git branch -r# 检出所需分支
git checkout $branch_name# 安装或部署项目到自己的仓库
mvn clean install -DskipTests
mvn clean deploy -DskipTests
在 pom.xml
文件中添加以下依赖:
<dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-clickhouse</artifactId><version>1.16.0-SNAPSHOT</version>
</dependency>
连接器选项
Flink ClickHouse 连接器提供了一系列配置选项,以下是一些常用选项的介绍:
Option | Required | Default | Type | Description |
---|---|---|---|---|
url | required | none | String | The ClickHouse jdbc url in format `jdbc:(ch |
username | optional | none | String | The ‘username’ and ‘password’ must both be specified if any of them is specified. |
password | optional | none | String | The ClickHouse password. |
database-name | optional | default | String | The ClickHouse database name. |
table-name | required | none | String | The ClickHouse table name. |
use-local | optional | false | Boolean | Directly read/write local tables in case of distributed table engine. |
sink.batch-size | optional | 1000 | Integer | The max flush size, over this will flush data. |
sink.flush-interval | optional | 1s | Duration | Over this flush interval mills, asynchronous threads will flush data. |
sink.max-retries | optional | 3 | Integer | The max retry times when writing records to the database failed. |
sink.update-strategy | optional | update | String | Convert a record of type UPDATE_AFTER to update/insert statement or just discard it, available: update, insert, discard. |
sink.partition-strategy | optional | balanced | String | Partition strategy: balanced(round-robin), hash(partition key), shuffle(random). |
sink.partition-key | optional | none | String | Partition key used for hash strategy. |
数据类型映射
Flink 和 ClickHouse 有各自的数据类型体系,Flink ClickHouse 连接器提供了它们之间的映射关系,如下表所示:
Flink Type | ClickHouse Type |
---|---|
CHAR | String |
VARCHAR | String / IP / UUID |
STRING | String / Enum |
BOOLEAN | UInt8 |
BYTES | FixedString |
DECIMAL | Decimal / Int128 / Int256 / UInt64 / UInt128 / UInt256 |
TINYINT | Int8 |
SMALLINT | Int16 / UInt8 |
INTEGER | Int32 / UInt16 / Interval |
BIGINT | Int64 / UInt32 |
FLOAT | Float32 |
DOUBLE | Float64 |
DATE | Date |
TIME | DateTime |
TIMESTAMP | DateTime |
TIMESTAMP_LTZ | DateTime |
INTERVAL_YEAR_MONTH | Int32 |
INTERVAL_DAY_TIME | Int64 |
ARRAY | Array |
MAP | Map |
ROW | Not supported |
MULTISET | Not supported |
RAW | Not supported |
如何使用
创建并读写表
在 Flink SQL 中,可以通过 CREATE TABLE
语句注册一个 ClickHouse 表,然后进行读写操作。示例代码如下:
-- register a clickhouse table `t_user` in flink sql.
CREATE TABLE t_user (`user_id` BIGINT,`user_type` INTEGER,`language` STRING,`country` STRING,`gender` STRING,`score` DOUBLE,`list` ARRAY<STRING>,`map` Map<STRING, BIGINT>,PRIMARY KEY (`user_id`) NOT ENFORCED
) WITH ('connector' = 'clickhouse','url' = 'jdbc:ch://127.0.0.1:8123','database-name' = 'tutorial','table-name' = 'users','sink.batch-size' = '500','sink.flush-interval' = '1000','sink.max-retries' = '3'
);-- read data from clickhouse
SELECT user_id, user_type from t_user;-- write data into the clickhouse table from the table `T`
INSERT INTO t_user
SELECT cast(`user_id` as BIGINT), `user_type`, `lang`, `country`, `gender`, `score`, ARRAY['CODER', 'SPORTSMAN'], CAST(MAP['BABA', cast(10 as BIGINT), 'NIO', cast(8 as BIGINT)] AS MAP<STRING, BIGINT>) FROM T;
创建并使用 ClickHouseCatalog
SQL 方式
> CREATE CATALOG clickhouse WITH ('type' = 'clickhouse','url' = 'jdbc:ch://127.0.0.1:8123','username' = 'username','password' = 'password','database-name' = 'default','use-local' = 'false',...
);> USE CATALOG clickhouse;
> SELECT user_id, user_type FROM `default`.`t_user` limit 10;
> INSERT INTO `default`.`t_user` SELECT ...;
Scala 方式
val tEnv = TableEnvironment.create(setting)val props = new util.HashMap[String, String]()
props.put(ClickHouseConfig.DATABASE_NAME, "default")
props.put(ClickHouseConfig.URL, "jdbc:ch://127.0.0.1:8123")
props.put(ClickHouseConfig.USERNAME, "username")
props.put(ClickHouseConfig.PASSWORD, "password")
props.put(ClickHouseConfig.SINK_FLUSH_INTERVAL, "30s")
val cHcatalog = new ClickHouseCatalog("clickhouse", props)
tEnv.registerCatalog("clickhouse", cHcatalog)
tEnv.useCatalog("clickhouse")tEnv.executeSql("insert into `clickhouse`.`default`.`t_table` select...");
Java 方式
TableEnvironment tEnv = TableEnvironment.create(setting);Map<String, String> props = new HashMap<>();
props.put(ClickHouseConfig.DATABASE_NAME, "default");
props.put(ClickHouseConfig.URL, "jdbc:ch://127.0.0.1:8123");
props.put(ClickHouseConfig.USERNAME, "username");
props.put(ClickHouseConfig.PASSWORD, "password");
props.put(ClickHouseConfig.SINK_FLUSH_INTERVAL, "30s");
Catalog cHcatalog = new ClickHouseCatalog("clickhouse", props);
tEnv.registerCatalog("clickhouse", cHcatalog);
tEnv.useCatalog("clickhouse");tEnv.executeSql("insert into `clickhouse`.`default`.`t_table` select...");
总结
Flink ClickHouse 连接器为 Flink 和 ClickHouse 之间的集成提供了便捷的解决方案,使得用户能够在 Flink 中高效地读写 ClickHouse 数据库。通过本文的介绍,你应该对该连接器的使用方法有了较为全面的了解。在实际应用中,可以根据具体需求调整连接器的配置选项,以达到最佳的性能和效果。同时,也欢迎参与项目的开发和贡献,共同推动该项目的发展。