当前位置: 首页 > news >正文

python训练day49 CBAM

import torch
import torch.nn as nn# 定义通道注意力
class ChannelAttention(nn.Module):def __init__(self, in_channels, ratio=16):"""通道注意力机制初始化参数:in_channels: 输入特征图的通道数ratio: 降维比例,用于减少参数量,默认为16"""super().__init__()# 全局平均池化,将每个通道的特征图压缩为1x1,保留通道间的平均值信息self.avg_pool = nn.AdaptiveAvgPool2d(1)# 全局最大池化,将每个通道的特征图压缩为1x1,保留通道间的最显著特征self.max_pool = nn.AdaptiveMaxPool2d(1)# 共享全连接层,用于学习通道间的关系# 先降维(除以ratio),再通过ReLU激活,最后升维回原始通道数self.fc = nn.Sequential(nn.Linear(in_channels, in_channels // ratio, bias=False),  # 降维层nn.ReLU(),  # 非线性激活函数nn.Linear(in_channels // ratio, in_channels, bias=False)   # 升维层)# Sigmoid函数将输出映射到0-1之间,作为各通道的权重self.sigmoid = nn.Sigmoid()def forward(self, x):"""前向传播函数参数:x: 输入特征图,形状为 [batch_size, channels, height, width]返回:调整后的特征图,通道权重已应用"""# 获取输入特征图的维度信息,这是一种元组的解包写法b, c, h, w = x.shape# 对平均池化结果进行处理:展平后通过全连接网络avg_out = self.fc(self.avg_pool(x).view(b, c))# 对最大池化结果进行处理:展平后通过全连接网络max_out = self.fc(self.max_pool(x).view(b, c))# 将平均池化和最大池化的结果相加并通过sigmoid函数得到通道权重attention = self.sigmoid(avg_out + max_out).view(b, c, 1, 1)# 将注意力权重与原始特征相乘,增强重要通道,抑制不重要通道return x * attention #这个运算是pytorch的广播机制
## 空间注意力模块
class SpatialAttention(nn.Module):def __init__(self, kernel_size=7):super().__init__()self.conv = nn.Conv2d(2, 1, kernel_size, padding=kernel_size//2, bias=False)self.sigmoid = nn.Sigmoid()def forward(self, x):# 通道维度池化avg_out = torch.mean(x, dim=1, keepdim=True)  # 平均池化:(B,1,H,W)max_out, _ = torch.max(x, dim=1, keepdim=True)  # 最大池化:(B,1,H,W)pool_out = torch.cat([avg_out, max_out], dim=1)  # 拼接:(B,2,H,W)attention = self.conv(pool_out)  # 卷积提取空间特征return x * self.sigmoid(attention)  # 特征与空间权重相乘

## CBAM模块
class CBAM(nn.Module):def __init__(self, in_channels, ratio=16, kernel_size=7):super().__init__()self.channel_attn = ChannelAttention(in_channels, ratio)self.spatial_attn = SpatialAttention(kernel_size)def forward(self, x):x = self.channel_attn(x)x = self.spatial_attn(x)return x
# 测试下通过CBAM模块的维度变化
# 输入卷积的尺寸为
# 假设输入特征图:batch=2,通道=512,尺寸=26x26
x = torch.randn(2, 512, 26, 26) 
cbam = CBAM(in_channels=512)
output = cbam(x)  # 输出形状不变:(2, 512, 26, 26)
print(f"Output shape: {output.shape}")  # 验证输出维度

 cnn+CBAM

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")# 数据预处理(与原代码一致)
train_transform = transforms.Compose([transforms.RandomCrop(32, padding=4),transforms.RandomHorizontalFlip(),transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),transforms.RandomRotation(15),transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])test_transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])# 加载数据集(与原代码一致)
train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=train_transform)
test_dataset = datasets.CIFAR10(root='./data', train=False, transform=test_transform)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)
# 定义带有CBAM的CNN模型
class CBAM_CNN(nn.Module):def __init__(self):super(CBAM_CNN, self).__init__()# ---------------------- 第一个卷积块(带CBAM) ----------------------self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1)self.bn1 = nn.BatchNorm2d(32) # 批归一化self.relu1 = nn.ReLU()self.pool1 = nn.MaxPool2d(kernel_size=2)self.cbam1 = CBAM(in_channels=32)  # 在第一个卷积块后添加CBAM# ---------------------- 第二个卷积块(带CBAM) ----------------------self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)self.bn2 = nn.BatchNorm2d(64)self.relu2 = nn.ReLU()self.pool2 = nn.MaxPool2d(kernel_size=2)self.cbam2 = CBAM(in_channels=64)  # 在第二个卷积块后添加CBAM# ---------------------- 第三个卷积块(带CBAM) ----------------------self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1)self.bn3 = nn.BatchNorm2d(128)self.relu3 = nn.ReLU()self.pool3 = nn.MaxPool2d(kernel_size=2)self.cbam3 = CBAM(in_channels=128)  # 在第三个卷积块后添加CBAM# ---------------------- 全连接层 ----------------------self.fc1 = nn.Linear(128 * 4 * 4, 512)self.dropout = nn.Dropout(p=0.5)self.fc2 = nn.Linear(512, 10)def forward(self, x):# 第一个卷积块x = self.conv1(x)x = self.bn1(x)x = self.relu1(x)x = self.pool1(x)x = self.cbam1(x)  # 应用CBAM# 第二个卷积块x = self.conv2(x)x = self.bn2(x)x = self.relu2(x)x = self.pool2(x)x = self.cbam2(x)  # 应用CBAM# 第三个卷积块x = self.conv3(x)x = self.bn3(x)x = self.relu3(x)x = self.pool3(x)x = self.cbam3(x)  # 应用CBAM# 全连接层x = x.view(-1, 128 * 4 * 4)x = self.fc1(x)x = self.relu3(x)x = self.dropout(x)x = self.fc2(x)return x# 初始化模型并移至设备
model = CBAM_CNN().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', patience=3, factor=0.5)
# 训练函数
def train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs):model.train()all_iter_losses = []iter_indices = []train_acc_history = []test_acc_history = []train_loss_history = []test_loss_history = []for epoch in range(epochs):running_loss = 0.0correct = 0total = 0for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)optimizer.zero_grad()output = model(data)loss = criterion(output, target)loss.backward()optimizer.step()iter_loss = loss.item()all_iter_losses.append(iter_loss)iter_indices.append(epoch * len(train_loader) + batch_idx + 1)running_loss += iter_loss_, predicted = output.max(1)total += target.size(0)correct += predicted.eq(target).sum().item()if (batch_idx + 1) % 100 == 0:print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} 'f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')epoch_train_loss = running_loss / len(train_loader)epoch_train_acc = 100. * correct / totaltrain_acc_history.append(epoch_train_acc)train_loss_history.append(epoch_train_loss)# 测试阶段model.eval()test_loss = 0correct_test = 0total_test = 0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()_, predicted = output.max(1)total_test += target.size(0)correct_test += predicted.eq(target).sum().item()epoch_test_loss = test_loss / len(test_loader)epoch_test_acc = 100. * correct_test / total_testtest_acc_history.append(epoch_test_acc)test_loss_history.append(epoch_test_loss)scheduler.step(epoch_test_loss)print(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')plot_iter_losses(all_iter_losses, iter_indices)plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history)return epoch_test_acc# 绘图函数
def plot_iter_losses(losses, indices):plt.figure(figsize=(10, 4))plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')plt.xlabel('Iteration(Batch序号)')plt.ylabel('损失值')plt.title('每个 Iteration 的训练损失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss):epochs = range(1, len(train_acc) + 1)plt.figure(figsize=(12, 4))plt.subplot(1, 2, 1)plt.plot(epochs, train_acc, 'b-', label='训练准确率')plt.plot(epochs, test_acc, 'r-', label='测试准确率')plt.xlabel('Epoch')plt.ylabel('准确率 (%)')plt.title('训练和测试准确率')plt.legend()plt.grid(True)plt.subplot(1, 2, 2)plt.plot(epochs, train_loss, 'b-', label='训练损失')plt.plot(epochs, test_loss, 'r-', label='测试损失')plt.xlabel('Epoch')plt.ylabel('损失值')plt.title('训练和测试损失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()# 执行训练
epochs = 50
print("开始使用带CBAM的CNN训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")# # 保存模型
# torch.save(model.state_dict(), 'cifar10_cbam_cnn_model.pth')
# print("模型已保存为: cifar10_cbam_cnn_model.pth")

@浙大疏锦行 

http://www.dtcms.com/a/266779.html

相关文章:

  • 流程分类框架体系设计应该梳理到L5还是L6?
  • DePIN 普惠结构的缺失拼图,为什么是 UBI Network?
  • js中的捕获阶段和冒泡阶段
  • vue2/3安装依赖报错,终极解决方案
  • Kuberrnetes 服务发布
  • 【MySQL】十六,MySQL窗口函数
  • Mint密室 · 猫猫狐狐的“特征选择”囚室逃脱
  • Ubuntu下的Tomcat服务器部署
  • Linux基础 -- NAND Flash UBIFS基础特性及注意点
  • 【沉浸式解决问题】idea开发中mapper类中突然找不到对应实体类
  • 【Agent】构建专家级SQL Agent交互
  • Qt控件核心属性全解析
  • 【Bluedroid】 BLE 隐私保护机制深度剖析(btm_ble_reset_id)
  • [学习记录]Unity-Shader-曲面细分着色器
  • IDEA-常用的开发组件
  • 用户进程的借壳挂靠之术
  • JAVA-springboot 整合Redis
  • 大数据在UI前端的应用创新研究:基于图神经网络的用户关系网络分析
  • [C++] C++多重继承:深入解析复杂继承关系
  • Blob分析及形态学分析
  • AWS 中如何添加一个内部域名
  • Spring AI Alibaba 来啦!!!
  • 本地区块链服务在物联网中的应用实例
  • M30280F8HP#U5B 瑞萨16位工业MCU微控制器,CAN 2.0B+专用PWM,电机控制专家!
  • 使用mindie:2.0.RC2-800I-A2-py311-openeuler24.03-lts制作一个通用的模型推理性能测试的镜像
  • Flynn分类法知识点梳理
  • 微服务架构的演进:迈向云原生
  • 【Spring Boot】Druid 连接池 YAML 配置详解
  • 马尔可夫链:随机过程的记忆法则与演化密码
  • 在LinuxMint 22.1(Ubuntu24.04)上安装使用同花顺远航版