当前位置: 首页 > news >正文

代码随想录算法训练营day18

 530.二叉搜索树的最小绝对差

力扣题目链接(opens new window)

给你一棵所有节点为非负值的二叉搜索树,请你计算树中任意两节点的差的绝对值的最小值。

示例:

530二叉搜索树的最小绝对差

提示:树中至少有 2 个节点。

 递归

那么二叉搜索树采用中序遍历,其实就是一个有序数组。

在一个有序数组上求两个数最小差值,这是不是就是一道送分题了。

最直观的想法,就是把二叉搜索树转换成有序数组,然后遍历一遍数组,就统计出来最小差值了。

class Solution {TreeNode pre; // 记录上一个遍历的结点int result = Integer.MAX_VALUE;public int getMinimumDifference(TreeNode root) {if (root == null)return 0;traversal(root);return result;}public void traversal(TreeNode root) {if (root == null)return;// 左traversal(root.left);// 中if (pre != null) {result = Math.min(result, root.val - pre.val);}pre = root;// 右traversal(root.right);}
}

530.二叉搜索树的最小绝对差

需要领悟一下二叉树遍历上双指针操作,优先掌握递归

题目链接/文章讲解:代码随想录

视频讲解:二叉搜索树中,需要掌握如何双指针遍历!| LeetCode:530.二叉搜索树的最小绝对差_哔哩哔哩_bilibili

501.二叉搜索树中的众数

  

力扣题目链接(opens new window)

给定一个有相同值的二叉搜索树(BST),找出 BST 中的所有众数(出现频率最高的元素)。

假定 BST 有如下定义:

  • 结点左子树中所含结点的值小于等于当前结点的值
  • 结点右子树中所含结点的值大于等于当前结点的值
  • 左子树和右子树都是二叉搜索树

例如:

给定 BST [1,null,2,2],

501. 二叉搜索树中的众数

返回[2].

提示:如果众数超过1个,不需考虑输出顺序

进阶:你可以不使用额外的空间吗?(假设由递归产生的隐式调用栈的开销不被计算在内)

递归法

如果不是二叉搜索树

如果不是二叉搜索树,最直观的方法一定是把这个树都遍历了,用map统计频率,把频率排个序,最后取前面高频的元素的集合。

具体步骤如下:

1.这个树都遍历了,用map统计频率

至于用前中后序哪种遍历也不重要,因为就是要全遍历一遍,怎么个遍历法都行,层序遍历都没毛病!

这里采用前序遍历,代码如下:

// map<int, int> key:元素,value:出现频率
void searchBST(TreeNode* cur, unordered_map<int, int>& map) { // 前序遍历if (cur == NULL) return ;map[cur->val]++; // 统计元素频率searchBST(cur->left, map);searchBST(cur->right, map);return ;
}

2.把统计的出来的出现频率(即map中的value)排个序

有的同学可能可以想直接对map中的value排序,还真做不到,C++中如果使用std::map或者std::multimap可以对key排序,但不能对value排序。

所以要把map转化数组即vector,再进行排序,当然vector里面放的也是pair<int, int>类型的数据,第一个int为元素,第二个int为出现频率。

代码如下:

bool static cmp (const pair<int, int>& a, const pair<int, int>& b) {return a.second > b.second; // 按照频率从大到小排序
}vector<pair<int, int>> vec(map.begin(), map.end());
sort(vec.begin(), vec.end(), cmp); // 给频率排个序

3.取前面高频的元素

此时数组vector中已经是存放着按照频率排好序的pair,那么把前面高频的元素取出来就可以了。

代码如下:

result.push_back(vec[0].first);
for (int i = 1; i < vec.size(); i++) {// 取最高的放到result数组中if (vec[i].second == vec[0].second) result.push_back(vec[i].first);else break;
}
return result;

 中序遍历-不使用额外空间,利用二叉搜索树特性

class Solution {ArrayList<Integer> resList;int maxCount;int count;TreeNode pre;public int[] findMode(TreeNode root) {resList = new ArrayList<>();maxCount = 0;count = 0;pre = null;findMode1(root);int[] res = new int[resList.size()];for (int i = 0; i < resList.size(); i++) {res[i] = resList.get(i);}return res;}public void findMode1(TreeNode root) {if (root == null) {return;}findMode1(root.left);int rootValue = root.val;// 计数if (pre == null || rootValue != pre.val) {count = 1;} else {count++;}// 更新结果以及maxCountif (count > maxCount) {resList.clear();resList.add(rootValue);maxCount = count;} else if (count == maxCount) {resList.add(rootValue);}pre = root;findMode1(root.right);}
}

501.二叉搜索树中的众数

和 530差不多双指针思路,不过 这里涉及到一个很巧妙的代码技巧。

可以先自己做做看,然后看我的视频讲解。

代码随想录

视频讲解:不仅双指针,还有代码技巧可以惊艳到你! | LeetCode:501.二叉搜索树中的众数_哔哩哔哩_bilibili

236. 二叉树的最近公共祖先

力扣题目链接(opens new window)

给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。

百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”

例如,给定如下二叉树:  root = [3,5,1,6,2,0,8,null,null,7,4]

236. 二叉树的最近公共祖先

示例 1: 输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1 输出: 3 解释: 节点 5 和节点 1 的最近公共祖先是节点 3。

示例 2: 输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4 输出: 5 解释: 节点 5 和节点 4 的最近公共祖先是节点 5。因为根据定义最近公共祖先节点可以为节点本身。

说明:

  • 所有节点的值都是唯一的。
  • p、q 为不同节点且均存在于给定的二叉树中。

遇到这个题目首先想的是要是能自底向上查找就好了,这样就可以找到公共祖先了。

那么二叉树如何可以自底向上查找呢?

回溯啊,二叉树回溯的过程就是从底到上。

后序遍历(左右中)就是天然的回溯过程,可以根据左右子树的返回值,来处理中节点的逻辑。

接下来就看如何判断一个节点是节点q和节点p的公共祖先呢。

首先最容易想到的一个情况:如果找到一个节点,发现左子树出现结点p,右子树出现节点q,或者 左子树出现结点q,右子树出现节点p,那么该节点就是节点p和q的最近公共祖先。 即情况一:

判断逻辑是 如果递归遍历遇到q,就将q返回,遇到p 就将p返回,那么如果 左右子树的返回值都不为空,说明此时的中节点,一定是q 和p 的最近祖先。

那么有录友可能疑惑,会不会左子树 遇到q 返回,右子树也遇到q返回,这样并没有找到 q 和p的最近祖先。

这么想的录友,要审题了,题目强调:二叉树节点数值是不重复的,而且一定存在 q 和 p

但是很多人容易忽略一个情况,就是节点本身p(q),它拥有一个子孙节点q(p)。 情况二:

其实情况一 和 情况二 代码实现过程都是一样的,也可以说,实现情况一的逻辑,顺便包含了情况二。

因为遇到 q 或者 p 就返回,这样也包含了 q 或者 p 本身就是 公共祖先的情况。

这一点是很多录友容易忽略的,在下面的代码讲解中,可以再去体会。

递归三部曲:

  • 确定递归函数返回值以及参数

需要递归函数返回值,来告诉我们是否找到节点q或者p,那么返回值为bool类型就可以了。

但我们还要返回最近公共节点,可以利用上题目中返回值是TreeNode * ,那么如果遇到p或者q,就把q或者p返回,返回值不为空,就说明找到了q或者p。

代码如下:

TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q)

1

  • 确定终止条件

遇到空的话,因为树都是空了,所以返回空。

那么我们来说一说,如果 root == q,或者 root == p,说明找到 q p ,则将其返回,这个返回值,后面在中节点的处理过程中会用到,那么中节点的处理逻辑,下面讲解。

代码如下:

if (root == q || root == p || root == NULL) return root;

1

  • 确定单层递归逻辑

值得注意的是 本题函数有返回值,是因为回溯的过程需要递归函数的返回值做判断,但本题我们依然要遍历树的所有节点。

我们在二叉树:递归函数究竟什么时候需要返回值,什么时候不要返回值? (opens new window)中说了 递归函数有返回值就是要遍历某一条边,但有返回值也要看如何处理返回值!

如果递归函数有返回值,如何区分要搜索一条边,还是搜索整个树呢?

搜索一条边的写法:

if (递归函数(root->left)) return ;if (递归函数(root->right)) return ;

搜索整个树写法:

left = 递归函数(root->left);  // 左
right = 递归函数(root->right); // 右
left与right的逻辑处理;         // 中 

看出区别了没?

在递归函数有返回值的情况下:如果要搜索一条边,递归函数返回值不为空的时候,立刻返回,如果搜索整个树,直接用一个变量left、right接住返回值,这个left、right后序还有逻辑处理的需要,也就是后序遍历中处理中间节点的逻辑(也是回溯)

那么为什么要遍历整棵树呢?直观上来看,找到最近公共祖先,直接一路返回就可以了。

如图:

236.二叉树的最近公共祖先

就像图中一样直接返回7。

但事实上还要遍历根节点右子树(即使此时已经找到了目标节点了),也就是图中的节点4、15、20。

因为在如下代码的后序遍历中,如果想利用left和right做逻辑处理, 不能立刻返回,而是要等left与right逻辑处理完之后才能返回。

left = 递归函数(root->left);  // 左
right = 递归函数(root->right); // 右
left与right的逻辑处理;         // 中 

所以此时大家要知道我们要遍历整棵树。知道这一点,对本题就有一定深度的理解了。

那么先用left和right接住左子树和右子树的返回值,代码如下:

TreeNode* left = lowestCommonAncestor(root->left, p, q);
TreeNode* right = lowestCommonAncestor(root->right, p, q);

如果left 和 right都不为空,说明此时root就是最近公共节点。这个比较好理解

如果left为空,right不为空,就返回right,说明目标节点是通过right返回的,反之依然

这里有的同学就理解不了了,为什么left为空,right不为空,目标节点通过right返回呢?

如图:

236.二叉树的最近公共祖先1

图中节点10的左子树返回null,右子树返回目标值7,那么此时节点10的处理逻辑就是把右子树的返回值(最近公共祖先7)返回上去!

这里也很重要,可能刷过这道题目的同学,都不清楚结果究竟是如何从底层一层一层传到头结点的。

那么如果left和right都为空,则返回left或者right都是可以的,也就是返回空。

代码如下:

if (left == NULL && right != NULL) return right;
else if (left != NULL && right == NULL) return left;
else  { //  (left == NULL && right == NULL)return NULL;
}

那么寻找最小公共祖先,完整流程图如下:

236.二叉树的最近公共祖先2

从图中,大家可以看到,我们是如何回溯遍历整棵二叉树,将结果返回给头结点的!

整体代码如下:

class Solution {
public:TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {if (root == q || root == p || root == NULL) return root;TreeNode* left = lowestCommonAncestor(root->left, p, q);TreeNode* right = lowestCommonAncestor(root->right, p, q);if (left != NULL && right != NULL) return root;if (left == NULL && right != NULL) return right;else if (left != NULL && right == NULL) return left;else  { //  (left == NULL && right == NULL)return NULL;}}
};

  

//递归class Solution {public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {if (root == null || root == p || root == q) { // 递归结束条件return root;}// 后序遍历TreeNode left = lowestCommonAncestor(root.left, p, q);TreeNode right = lowestCommonAncestor(root.right, p, q);if(left == null && right == null) { // 若未找到节点 p 或 qreturn null;}else if(left == null && right != null) { // 若找到一个节点return right;}else if(left != null && right == null) { // 若找到一个节点return left;}else { // 若找到两个节点return root;}}
}//迭代class Solution {public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {int max = Integer.MAX_VALUE;Stack<TreeNode> st = new Stack<>();TreeNode cur = root, pre = null;while (cur != null || !st.isEmpty()) {while (cur != null) {st.push(cur);cur = cur.left;}cur = st.pop();if (cur.right == null || cur.right == pre) {// p/q是 中/左 或者 中/右 , 返回中if (cur == p || cur == q) {if ((cur.left != null && cur.left.val == max) || (cur.right != null && cur.right.val == max)) {return cur;}cur.val = max;}// p/q是 左/右 , 返回中if (cur.left != null && cur.left.val == max && cur.right != null && cur.right.val == max) {return cur;}// MAX_VALUE 往上传递if ((cur.left != null && cur.left.val == max) || (cur.right != null && cur.right.val == max)) {cur.val = max;}pre = cur;cur = null;} else {st.push(cur);cur = cur.right;}}return null;}
}

236. 二叉树的最近公共祖先

本题其实是比较难的,可以先看我的视频讲解

代码随想录

视频讲解:自底向上查找,有点难度! | LeetCode:236. 二叉树的最近公共祖先_哔哩哔哩_bilibili

相关文章:

  • 什么是 Paxos和Raft
  • 信号处理学习——文献精读与code复现之TFN——嵌入时频变换的可解释神经网络(下)
  • 商业秘密中经营信息的法律保护探析——以客户名册为例
  • 开源3D 动态银河系特效:Vue 与 THREE.JS 的奇幻之旅
  • 如何在FastAPI中打造坚不可摧的Web安全防线?
  • Java 编程之观察者模式详解
  • 笔记05:Allegro导入DXF文件
  • Tailwind CSS工作原理
  • Harbor的安装与使用
  • C++ 第三阶段 新标准库组件 - 第二节:std::filesystem(文件系统操作)
  • 设计模式-代理模式、装饰者模式
  • Vue3—插槽solt
  • 微机系统 - 第7章 -可编程接口芯片
  • 概率概率密度
  • GO 语言学习 之 函数
  • 基于MFC的遥感图像匹配程序设计
  • 前端进阶之路-从传统前端到VUE-JS(第一期-VUE-JS环境配置)(Node-JS环境配置)(Node-JS/npm换源)
  • SQL 子查询全位置解析:可编写子查询的 7 大子句
  • Hyper-v-中的FnOs--飞牛Nas虚拟磁盘扩容(不清除数据)
  • Java安装与使用教程