import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader , Dataset
from torchvision import datasets, transforms
import matplotlib.pyplot as plttorch.manual_seed(42)
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.1307,), (0.3081,))
])
train_dataset = datasets.MNIST(root='./data',train=True,download=True,transform=transform
)test_dataset = datasets.MNIST(root='./data',train=False,transform=transform
)
sample_idx = torch.randint(0, len(train_dataset), size=(1,)).item()
image, label = train_dataset[sample_idx]
def imshow(img):img = img* 0.3081 + 0.1307npimg= img.numpy()plt.imshow(npimg[0], cmap='gray')plt.show()
print(f'Label:{label}')
imshow(image)
import torch
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as nptorch.manual_seed(42)
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])trainset = torchvision.datasets.CIFAR10(root='./data',train=True,download=True,transform=transform
)trainloader = torch.utils.data.DataLoader(trainset,batch_size=4,shuffle=True
)classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')sample_idx = torch.randint(0, len(trainset), size=(1,)).item()
image, label = trainset[sample_idx]print(f"图像形状: {image.shape}")
print(f"图像类别: {classes[label]}")def imshow(img):img = img / 2 + 0.5 npimg = img.numpy()plt.imshow(np.transpose(npimg, (1, 2, 0))) plt.axis('off') plt.show()imshow(image)
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))
])
import matplotlib.pyplot as plttrain_dataset = datasets.MNIST(root='./data',train=True,download=True,transform=transform
)test_dataset = datasets.MNIST(root='./data',train=False,transform=transform
)
class MLP(nn.Module):def __init__(self):super(MLP, self).__init__()self.flatten = nn.Flatten() self.layer1 = nn.Linear(784, 128) self.relu = nn.ReLU() self.layer2 = nn.Linear(128, 10) def forward(self, x):x = self.flatten(x) x = self.layer1(x) x = self.relu(x) x = self.layer2(x) return xmodel = MLP()device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device) from torchsummary import summary
print("\n模型结构信息:")
summary(model, input_size=(1, 28, 28))
class MLP(nn.Module):def __init__(self, input_size=3072, hidden_size=128, num_classes=10):super(MLP, self).__init__()self.flatten = nn.Flatten()self.fc1 = nn.Linear(input_size, hidden_size) self.relu = nn.ReLU()self.fc2 = nn.Linear(hidden_size, num_classes) def forward(self, x):x = self.flatten(x) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) return xmodel = MLP()device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
from torchsummary import summary
print("\n模型结构信息:")
summary(model, input_size=(3, 32, 32)) class MLP(nn.Module):def __init__(self):super().__init__()self.flatten = nn.Flatten() self.layer1 = nn.Linear(784, 128)self.relu = nn.ReLU()self.layer2 = nn.Linear(128, 10)def forward(self, x):x = self.flatten(x) x = self.layer1(x) x = self.relu(x)x = self.layer2(x) return x
from torch.utils.data import DataLoadertrain_loader = DataLoader(dataset=train_dataset, batch_size=64, shuffle=True
)test_loader = DataLoader(dataset=test_dataset,batch_size=1000,shuffle=False
)