import re
import nltk
from nltk.corpus import stopwords
from nltk.stem import PorterStemmer, WordNetLemmatizernltk.download('punkt')
nltk.download('stopwords')
nltk.download('wordnet')def preprocess_text(text):# 转换为小写text = text.lower()# 移除特殊字符和数字text = re.sub(r'[^a-zA-Z\s]', '', text)# 分词tokens = nltk.word_tokenize(text)# 去除停用词stop_words = set(stopwords.words('english'))tokens = [word for word in tokens if word not in stop_words]# 词干提取stemmer = PorterStemmer()tokens = [stemmer.stem(word) for word in tokens]# 词形还原lemmatizer = WordNetLemmatizer()tokens = [lemmatiz