当前位置: 首页 > news >正文

F(x, y, z) = 0 隐函数微分 确定自变量

多元隐函数偏导的通用公式

设一个隐函数由三元函数定义:

F ( x , y , z ) = 0 F(x, y, z) = 0 F(x,y,z)=0

且假设 z = z ( x , y ) z = z(x, y) z=z(x,y),即 z z z x , y x, y x,y 的函数,满足这个等式恒成立。则有以下公式:

∂ z ∂ x = − F x F z , ∂ z ∂ y = − F y F z \frac{\partial z}{\partial x} = -\frac{F_x}{F_z}, \quad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z} xz=FzFx,yz=FzFy

我们来详细推导一下这个通用结果。


✅ 一、基本思路:全微分 + 链式法则

我们把 z = z ( x , y ) z = z(x, y) z=z(x,y) 看成隐式给出的函数。由于

F ( x , y , z ( x , y ) ) = 0 F(x, y, z(x, y)) = 0 F(x,y,z(x,y))=0

恒成立,我们对这个方程两边对 x x x y y y 分别求偏导,使用链式法则。


✅ 二、对 x x x 求偏导

∂ ∂ x F ( x , y , z ( x , y ) ) = 0 \frac{\partial}{\partial x} F(x, y, z(x, y)) = 0 xF(x,y,z(x,y))=0

用链式法则展开:

∂ F ∂ x + ∂ F ∂ z ⋅ ∂ z ∂ x = 0 \frac{\partial F}{\partial x} + \frac{\partial F}{\partial z} \cdot \frac{\partial z}{\partial x} = 0 xF+zFxz=0

即:

F x + F z ⋅ ∂ z ∂ x = 0 ⇒ ∂ z ∂ x = − F x F z F_x + F_z \cdot \frac{\partial z}{\partial x} = 0 \Rightarrow \frac{\partial z}{\partial x} = -\frac{F_x}{F_z} Fx+Fzxz=0xz=FzFx


✅ 三、对 y y y 求偏导

同理,

∂ ∂ y F ( x , y , z ( x , y ) ) = 0 ⇒ F y + F z ⋅ ∂ z ∂ y = 0 ⇒ ∂ z ∂ y = − F y F z \frac{\partial}{\partial y} F(x, y, z(x, y)) = 0 \Rightarrow F_y + F_z \cdot \frac{\partial z}{\partial y} = 0 \Rightarrow \frac{\partial z}{\partial y} = -\frac{F_y}{F_z} yF(x,y,z(x,y))=0Fy+Fzyz=0yz=FzFy


✅ 四、注意条件

  • 要求 F F F 在某点连续可微;
  • 并且 F z ≠ 0 F_z \ne 0 Fz=0,即对 z z z 偏导不为零;
  • 这确保了我们可以用隐函数定理,在局部可以将 z z z 写成 x , y x, y x,y 的函数。


✅ 五、总结

多元隐函数的偏导公式:

∂ z ∂ x = − F x F z , ∂ z ∂ y = − F y F z \frac{\partial z}{\partial x} = -\frac{F_x}{F_z}, \quad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z} xz=FzFx,yz=FzFy

是由链式法则推导出来的,适用于 F ( x , y , z ) = 0 F(x, y, z) = 0 F(x,y,z)=0 给出 z = z ( x , y ) z = z(x, y) z=z(x,y) 的情形,本质是“复合函数求导 + 方程恒成立”。


疑问

你的问题是:

已知 F ( x , y , z ( x , y ) ) = 0 F(x, y, z(x, y)) = 0 F(x,y,z(x,y))=0,为什么对 x x x 求偏导时写成

F x + F z ⋅ ∂ z ∂ x = 0 ⇒ ∂ z ∂ x = − F x F z F_x + F_z \cdot \frac{\partial z}{\partial x} = 0 \Rightarrow \frac{\partial z}{\partial x} = -\frac{F_x}{F_z} Fx+Fzxz=0xz=FzFx

而没有 F y ⋅ ∂ y ∂ x F_y \cdot \frac{\partial y}{\partial x} Fyxy 那一项?


✅ 回答:因为 y y y 是自变量,不是 x x x 的函数!


🔍 详细解释:

在隐函数 F ( x , y , z ( x , y ) ) = 0 F(x, y, z(x, y)) = 0 F(x,y,z(x,y))=0 中, z z z x , y x, y x,y 的函数,但 x x x y y y 是彼此独立的变量。我们将 F F F 看成如下复合函数:

F ( x , y , z ( x , y ) ) F(x, y, z(x, y)) F(x,y,z(x,y))

在这个表达式中:

  • x x x:自变量
  • y y y:自变量
  • z z z:由 x , y x, y x,y 决定,即 z = z ( x , y ) z = z(x, y) z=z(x,y)

🧮 对 x x x 求偏导使用链式法则:

∂ ∂ x F ( x , y , z ( x , y ) ) = ∂ F ∂ x + ∂ F ∂ z ⋅ ∂ z ∂ x \frac{\partial}{\partial x} F(x, y, z(x, y)) = \frac{\partial F}{\partial x} + \frac{\partial F}{\partial z} \cdot \frac{\partial z}{\partial x} xF(x,y,z(x,y))=xF+zFxz

因为:

  • ∂ F ∂ x \frac{\partial F}{\partial x} xF:直接对 x x x 求偏导;
  • ∂ F ∂ z ⋅ ∂ z ∂ x \frac{\partial F}{\partial z} \cdot \frac{\partial z}{\partial x} zFxz:间接影响,因为 z z z x x x 的函数;
  • y y y 是常量,对 x x x 偏导时 ∂ y ∂ x = 0 \frac{\partial y}{\partial x} = 0 xy=0,不出现任何 F y F_y Fy 项。

📌 结论:

当你写下:

∂ ∂ x F ( x , y , z ( x , y ) ) = F x + F z ⋅ ∂ z ∂ x \frac{\partial}{\partial x} F(x, y, z(x, y)) = F_x + F_z \cdot \frac{\partial z}{\partial x} xF(x,y,z(x,y))=Fx+Fzxz

这是正确的,因为 F F F x x x y y y z z z 的函数,而 z z z 又是 x , y x, y x,y 的函数。但 偏导数只关心一个变量的变化,其他变量当常量看待,所以 y y y 看作常量。


🧠 小提示:

如果你写的是 全导数(不是偏导):

d d x F ( x , y ( x ) , z ( x , y ( x ) ) ) \frac{d}{dx} F(x, y(x), z(x, y(x))) dxdF(x,y(x),z(x,y(x)))

那就需要加上:

F x + F y ⋅ d y d x + F z ⋅ ( ∂ z ∂ x + ∂ z ∂ y ⋅ d y d x ) F_x + F_y \cdot \frac{dy}{dx} + F_z \cdot \left( \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dx} \right) Fx+Fydxdy+Fz(xz+yzdxdy)

但这属于更复杂的复合函数情况。


相关文章:

  • 【异常】极端事件的概率衰减方式(指数幂律衰减)
  • 【CUDA 】第5章 共享内存和常量内存——5.3减少全局内存访问(2)展开+动态共享内存
  • AI智能体|扣子(Coze)搭建【公众号对标文章采集拆解】工作流
  • 【量化】策略交易类型
  • 互联网协议IPv6
  • 解决Vscode JDK插件源码缺失问题
  • Opnelayers:封装Popup
  • HNSW - 分层可导航小世界
  • 使用idea开发工具创建javaweb项目工程
  • 《最短路(Bellman-ford)》题集
  • 振动力学:无阻尼多自由度系统(受迫振动)
  • agent基础概念
  • 在数字工厂实施过程中,如何学会通过梳理流程的思想来分析解决问题
  • gorm 配置数据库
  • DeepSeek R1 V2 深度探索:开源AI编码新利器,效能与创意并进
  • 深入解析 JavaScript 中 var、let、const 的核心区别与实践应用
  • Unity3D 开发中的创新技术:解锁 3D 开发的新境界
  • 什么是双脉冲测试?
  • 【LUT技术专题】带语义的图像自适应4DLUT
  • 深入理解Python内置模块及第三方库的使用与管理
  • 做网站看/爱站网关键词挖掘工具熊猫
  • 网站后端开发需要学什么/十大计算机培训机构排名
  • 郑州网站制作公司/app推广全国代理加盟
  • 通讯录管理网站建设/香飘飘奶茶
  • 计算机关于网站开发的证书/seo站外优化平台
  • 上海外贸网站seo/重大军事新闻