Hermite 插值
Hermite 插值
不少实际问题不但要求在节点上函数值相等,而且还要求它的导数值相等,甚至要求高阶导数值也相等。满足这种要求的插值多项式就是 Hermite 插值多项式。
下面只讨论函数值与导数值个数相等的情况。设在节点
a
≤
x
0
<
x
1
<
⋯
<
x
n
≤
b
a \leq x_0 < x_1 < \cdots < x_n \leq b
a≤x0<x1<⋯<xn≤b 上,
y
j
=
f
(
x
j
)
,
m
j
=
f
′
(
x
j
)
(
j
=
0
,
1
,
⋯
,
n
)
y_j = f(x_j), m_j = f'(x_j) (j=0,1,\cdots,n)
yj=f(xj),mj=f′(xj)(j=0,1,⋯,n),要求插值多项式
H
(
x
)
H(x)
H(x),满足条件
H
(
x
j
)
=
y
j
,
H
′
(
x
j
)
=
m
j
(
j
=
0
,
1
,
⋯
,
n
)
.
H(x_j) = y_j,\quad H'(x_j) = m_j \quad(j = 0,1,\cdots,n).
H(xj)=yj,H′(xj)=mj(j=0,1,⋯,n).
这里给出的
2
n
+
2
2n+2
2n+2 个条件,可唯一确定一个次数不超过
2
n
+
1
2n+1
2n+1 的多项式
H
2
n
+
1
(
x
)
=
H
(
x
)
,
H_{2n+1}(x) = H(x),
H2n+1(x)=H(x),
其形式为
H
2
n
+
1
(
x
)
=
a
0
+
a
1
x
+
⋯
+
a
2
n
+
1
x
2
n
+
1
.
H_{2n+1}(x) = a_0 + a_1x + \cdots + a_{2n+1}x^{2n+1}.
H2n+1(x)=a0+a1x+⋯+a2n+1x2n+1.