当前位置: 首页 > news >正文

【Day40】

DAY 40 训练和测试的规范写法

知识点回顾

  1. 彩色灰度图片测试训练规范写法封装在函数中
  2. 操作第一个维度batchsize全部展
  3. dropout操作训练阶段随机丢弃神经元测试阶段eval模式关闭dropout

作业仔细学习测试和训练代码逻辑这是基础这个代码框架后续会一直沿用后续重点慢慢就是转向模型定义阶段

"""
DAY 40 训练和测试的规范写法本节介绍深度学习中训练和测试的规范写法,包括:
1. 训练和测试函数的封装
2. 展平操作
3. dropout的使用
4. 训练过程可视化
"""import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
from torch.utils.data import DataLoader# 设置中文字体(解决中文显示问题)
plt.rcParams['font.sans-serif'] = ['SimHei']  # Windows系统常用黑体字体
plt.rcParams['axes.unicode_minus'] = False    # 正常显示负号# 设置随机种子,确保结果可复现
torch.manual_seed(42)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")#====================== 1. 数据加载 ======================def load_data(batch_size=64, is_train=True):"""加载CIFAR-10数据集Args:batch_size: 批次大小is_train: 是否为训练集Returns:dataloader: 数据加载器"""transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])dataset = torchvision.datasets.CIFAR10(root='./data', train=is_train,download=True,transform=transform)dataloader = DataLoader(dataset,batch_size=batch_size,shuffle=is_train,  # 训练集打乱,测试集不打乱num_workers=2)return dataloader#====================== 2. 模型定义 ======================class SimpleNet(nn.Module):def __init__(self, dropout_rate=0.5):super(SimpleNet, self).__init__()# 修改第一层卷积的输入通道为3(彩色图像)self.conv1 = nn.Conv2d(3, 32, 3, 1)self.conv2 = nn.Conv2d(32, 64, 3, 1)self.dropout1 = nn.Dropout2d(dropout_rate)  # 2D dropout用于卷积层self.dropout2 = nn.Dropout(dropout_rate)    # 1D dropout用于全连接层# 展平后的特征图大小计算:# 原始图像: 32x32# conv1: (32-3+1)x(32-3+1) = 30x30# maxpool: 15x15# conv2: (15-3+1)x(15-3+1) = 13x13# maxpool: 6x6# 因此全连接层输入大小为: 64 * 6 * 6self.fc1 = nn.Linear(64 * 6 * 6, 128)self.fc2 = nn.Linear(128, 10)def forward(self, x):x = self.conv1(x)x = F.relu(x)x = F.max_pool2d(x, 2)x = self.conv2(x)x = F.relu(x)x = F.max_pool2d(x, 2)x = self.dropout1(x)  # 训练时随机丢弃,测试时自动关闭# 展平操作:保留batch_size维度,其余维度展平x = torch.flatten(x, 1)  # 等价于 x.view(x.size(0), -1)x = self.fc1(x)x = F.relu(x)x = self.dropout2(x)x = self.fc2(x)return F.log_softmax(x, dim=1)#====================== 3. 训练函数 ======================def train(model, train_loader, optimizer, epoch, history):"""训练一个epochArgs:model: 模型train_loader: 训练数据加载器optimizer: 优化器epoch: 当前epoch数history: 记录训练历史的字典Returns:epoch_loss: 当前epoch的平均损失epoch_acc: 当前epoch的准确率"""model.train()  # 设置为训练模式,启用dropouttrain_loss = 0correct = 0total = 0for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)optimizer.zero_grad()  # 清空梯度output = model(data)   # 前向传播loss = F.nll_loss(output, target)  # 计算损失loss.backward()        # 反向传播optimizer.step()       # 更新参数train_loss += loss.item()pred = output.max(1, keepdim=True)[1]  # 获取最大概率的索引correct += pred.eq(target.view_as(pred)).sum().item()total += target.size(0)if batch_idx % 100 == 0:print(f'Train Epoch: {epoch} [{batch_idx * len(data)}/{len(train_loader.dataset)} 'f'({100. * batch_idx / len(train_loader):.0f}%)]\t'f'Loss: {loss.item():.6f}\t'f'Accuracy: {100. * correct / total:.2f}%')# 计算epoch的平均损失和准确率epoch_loss = train_loss / len(train_loader)epoch_acc = 100. * correct / total# 记录训练历史history['train_loss'].append(epoch_loss)history['train_acc'].append(epoch_acc)return epoch_loss, epoch_acc#====================== 4. 测试函数 ======================def test(model, test_loader, history):"""在测试集上评估模型Args:model: 模型test_loader: 测试数据加载器history: 记录训练历史的字典Returns:test_loss: 测试集上的平均损失accuracy: 测试集上的准确率"""model.eval()  # 设置为评估模式,关闭dropouttest_loss = 0correct = 0with torch.no_grad():  # 测试时不需要计算梯度for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += F.nll_loss(output, target, reduction='sum').item()pred = output.max(1, keepdim=True)[1]correct += pred.eq(target.view_as(pred)).sum().item()test_loss /= len(test_loader.dataset)accuracy = 100. * correct / len(test_loader.dataset)# 记录测试历史history['test_loss'].append(test_loss)history['test_acc'].append(accuracy)print(f'\nTest set: Average loss: {test_loss:.4f}, 'f'Accuracy: {correct}/{len(test_loader.dataset)} 'f'({accuracy:.2f}%)\n')return test_loss, accuracy#====================== 5. 可视化函数 ======================def plot_training_history(history):"""绘制训练历史曲线Args:history: 包含训练和测试历史数据的字典"""epochs = range(1, len(history['train_loss']) + 1)# 创建一个包含两个子图的图表plt.figure(figsize=(12, 4))# 绘制损失曲线plt.subplot(1, 2, 1)plt.plot(epochs, history['train_loss'], 'b-', label='训练损失')plt.plot(epochs, history['test_loss'], 'r-', label='测试损失')plt.title('训练和测试损失')plt.xlabel('Epoch')plt.ylabel('损失')plt.legend()plt.grid(True)# 绘制准确率曲线plt.subplot(1, 2, 2)plt.plot(epochs, history['train_acc'], 'b-', label='训练准确率')plt.plot(epochs, history['test_acc'], 'r-', label='测试准确率')plt.title('训练和测试准确率')plt.xlabel('Epoch')plt.ylabel('准确率 (%)')plt.legend()plt.grid(True)plt.tight_layout()plt.show()def visualize_predictions(model, test_loader, num_samples=5):"""可视化模型预测结果Args:model: 训练好的模型test_loader: 测试数据加载器num_samples: 要显示的样本数量"""model.eval()# 获取一批数据dataiter = iter(test_loader)images, labels = next(dataiter)# 获取预测结果with torch.no_grad():outputs = model(images.to(device))_, predicted = torch.max(outputs, 1)# 显示图像和预测结果fig = plt.figure(figsize=(12, 3))for idx in range(num_samples):ax = fig.add_subplot(1, num_samples, idx + 1)img = images[idx] / 2 + 0.5  # 反标准化npimg = img.numpy()plt.imshow(np.transpose(npimg, (1, 2, 0)))ax.set_title(f'预测: {classes[predicted[idx]]}\n实际: {classes[labels[idx]]}',color=('green' if predicted[idx] == labels[idx] else 'red'))plt.axis('off')plt.tight_layout()plt.show()#====================== 6. 主函数 ======================# CIFAR-10数据集的类别
classes = ('飞机', '汽车', '鸟', '猫', '鹿', '狗', '青蛙', '马', '船', '卡车')def main():# 超参数设置batch_size = 64epochs = 9lr = 0.01dropout_rate = 0.5# 初始化训练历史记录history = {'train_loss': [],'train_acc': [],'test_loss': [],'test_acc': []}# 加载数据print("正在加载训练集...")train_loader = load_data(batch_size, is_train=True)print("正在加载测试集...")test_loader = load_data(batch_size, is_train=False)# 创建模型model = SimpleNet(dropout_rate=dropout_rate).to(device)optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.9)# 训练和测试print(f"开始训练,使用设备: {device}")for epoch in range(1, epochs + 1):train_loss, train_acc = train(model, train_loader, optimizer, epoch, history)test_loss, test_acc = test(model, test_loader, history)# 可视化训练过程print("训练完成,绘制训练历史...")plot_training_history(history)# 可视化预测结果print("可视化模型预测结果...")visualize_predictions(model, test_loader)if __name__ == '__main__':main()"""
重点说明:1. 训练和测试的区别:- 训练时:model.train(),启用dropout- 测试时:model.eval(),关闭dropout2. 展平操作:- torch.flatten(x, 1) 或 x.view(x.size(0), -1)- 保留第一维度(batch_size),其余维度展平3. dropout的使用:- 训练阶段:随机丢弃神经元,防止过拟合- 测试阶段:自动关闭dropout,使用完整网络4. 规范写法的优点:- 代码结构清晰,便于维护- 功能模块化,易于复用- 训练过程可控,便于调试- 适用于不同的数据集和模型
"""
Train Epoch: 1 [19200/50000 (38%)]      Loss: 1.878432  Accuracy: 24.59%
Train Epoch: 1 [25600/50000 (51%)]      Loss: 1.737842  Accuracy: 27.03%
Train Epoch: 1 [32000/50000 (64%)]      Loss: 1.608304  Accuracy: 29.29%
Train Epoch: 1 [38400/50000 (77%)]      Loss: 1.654722  Accuracy: 30.90%
Train Epoch: 1 [44800/50000 (90%)]      Loss: 1.781868  Accuracy: 32.24%Test set: Average loss: 1.4125, Accuracy: 4879/10000 (48.79%)Train Epoch: 2 [0/50000 (0%)]   Loss: 1.725113  Accuracy: 31.25%
Train Epoch: 2 [6400/50000 (13%)]       Loss: 1.371717  Accuracy: 43.70%
Train Epoch: 2 [12800/50000 (26%)]      Loss: 1.377221  Accuracy: 43.85%
Train Epoch: 2 [19200/50000 (38%)]      Loss: 1.497515  Accuracy: 44.32%
Train Epoch: 2 [25600/50000 (51%)]      Loss: 1.509949  Accuracy: 44.92%
Train Epoch: 2 [32000/50000 (64%)]      Loss: 1.322219  Accuracy: 45.19%
Train Epoch: 2 [38400/50000 (77%)]      Loss: 1.451519  Accuracy: 45.65%
Train Epoch: 2 [44800/50000 (90%)]      Loss: 1.284523  Accuracy: 46.09%Test set: Average loss: 1.2420, Accuracy: 5596/10000 (55.96%)Train Epoch: 3 [0/50000 (0%)]   Loss: 1.457208  Accuracy: 57.81%
Train Epoch: 3 [6400/50000 (13%)]       Loss: 1.411661  Accuracy: 49.80%
Train Epoch: 3 [12800/50000 (26%)]      Loss: 1.251750  Accuracy: 49.25%
Train Epoch: 3 [19200/50000 (38%)]      Loss: 1.485202  Accuracy: 49.98%
Train Epoch: 3 [25600/50000 (51%)]      Loss: 1.219448  Accuracy: 50.09%
Train Epoch: 3 [32000/50000 (64%)]      Loss: 1.319644  Accuracy: 50.40%
Train Epoch: 3 [38400/50000 (77%)]      Loss: 1.431417  Accuracy: 50.58%
Train Epoch: 3 [44800/50000 (90%)]      Loss: 1.321420  Accuracy: 51.04%Test set: Average loss: 1.1419, Accuracy: 6067/10000 (60.67%)Train Epoch: 4 [0/50000 (0%)]   Loss: 1.274258  Accuracy: 54.69%
Train Epoch: 4 [6400/50000 (13%)]       Loss: 1.455593  Accuracy: 53.57%
Train Epoch: 4 [12800/50000 (26%)]      Loss: 1.439796  Accuracy: 53.95%
Train Epoch: 4 [19200/50000 (38%)]      Loss: 1.333504  Accuracy: 54.18%
Train Epoch: 4 [25600/50000 (51%)]      Loss: 1.127613  Accuracy: 54.53%
Train Epoch: 4 [32000/50000 (64%)]      Loss: 1.197434  Accuracy: 54.76%
Train Epoch: 4 [38400/50000 (77%)]      Loss: 1.217459  Accuracy: 54.58%
Train Epoch: 4 [44800/50000 (90%)]      Loss: 1.249435  Accuracy: 54.67%Test set: Average loss: 1.0938, Accuracy: 6156/10000 (61.56%)Train Epoch: 5 [0/50000 (0%)]   Loss: 1.200900  Accuracy: 54.69%
Train Epoch: 5 [6400/50000 (13%)]       Loss: 1.200518  Accuracy: 55.96%
Train Epoch: 5 [12800/50000 (26%)]      Loss: 1.267728  Accuracy: 56.58%
Train Epoch: 5 [19200/50000 (38%)]      Loss: 1.501915  Accuracy: 56.76%
Train Epoch: 5 [25600/50000 (51%)]      Loss: 1.248580  Accuracy: 56.72%
Train Epoch: 5 [32000/50000 (64%)]      Loss: 1.385589  Accuracy: 56.64%
Train Epoch: 5 [38400/50000 (77%)]      Loss: 1.377769  Accuracy: 56.59%
Train Epoch: 5 [44800/50000 (90%)]      Loss: 1.355240  Accuracy: 56.62%Test set: Average loss: 1.0414, Accuracy: 6448/10000 (64.48%)Train Epoch: 6 [0/50000 (0%)]   Loss: 1.194540  Accuracy: 64.06%
Train Epoch: 6 [6400/50000 (13%)]       Loss: 1.255205  Accuracy: 59.00%
Train Epoch: 6 [12800/50000 (26%)]      Loss: 1.216109  Accuracy: 58.45%
Train Epoch: 6 [19200/50000 (38%)]      Loss: 0.916238  Accuracy: 58.74%
Train Epoch: 6 [25600/50000 (51%)]      Loss: 1.081454  Accuracy: 58.52%
Train Epoch: 6 [32000/50000 (64%)]      Loss: 1.170482  Accuracy: 58.42%
Train Epoch: 6 [38400/50000 (77%)]      Loss: 1.263351  Accuracy: 58.43%
Train Epoch: 6 [44800/50000 (90%)]      Loss: 1.197278  Accuracy: 58.45%Test set: Average loss: 0.9976, Accuracy: 6609/10000 (66.09%)Train Epoch: 7 [0/50000 (0%)]   Loss: 1.296109  Accuracy: 51.56%
Train Epoch: 7 [6400/50000 (13%)]       Loss: 1.194998  Accuracy: 59.25%
Train Epoch: 7 [12800/50000 (26%)]      Loss: 1.045425  Accuracy: 58.80%
Train Epoch: 7 [19200/50000 (38%)]      Loss: 1.096962  Accuracy: 59.35%
Train Epoch: 7 [25600/50000 (51%)]      Loss: 1.002581  Accuracy: 59.48%
Train Epoch: 7 [32000/50000 (64%)]      Loss: 1.101984  Accuracy: 59.45%
Train Epoch: 7 [38400/50000 (77%)]      Loss: 0.934384  Accuracy: 59.56%
Train Epoch: 7 [44800/50000 (90%)]      Loss: 1.025743  Accuracy: 59.56%Test set: Average loss: 0.9824, Accuracy: 6663/10000 (66.63%)Train Epoch: 8 [0/50000 (0%)]   Loss: 1.121836  Accuracy: 60.94%
Train Epoch: 8 [6400/50000 (13%)]       Loss: 1.057686  Accuracy: 60.47%
Train Epoch: 8 [12800/50000 (26%)]      Loss: 1.132846  Accuracy: 60.13%
Train Epoch: 8 [19200/50000 (38%)]      Loss: 1.094760  Accuracy: 59.88%
Train Epoch: 8 [25600/50000 (51%)]      Loss: 1.392307  Accuracy: 59.98%
Train Epoch: 8 [32000/50000 (64%)]      Loss: 0.905305  Accuracy: 60.01%
Train Epoch: 8 [38400/50000 (77%)]      Loss: 1.293327  Accuracy: 60.11%
Train Epoch: 8 [44800/50000 (90%)]      Loss: 1.154168  Accuracy: 60.13%Test set: Average loss: 0.9402, Accuracy: 6824/10000 (68.24%)Train Epoch: 9 [0/50000 (0%)]   Loss: 0.742247  Accuracy: 70.31%
Train Epoch: 9 [6400/50000 (13%)]       Loss: 0.880693  Accuracy: 60.89%
Train Epoch: 9 [12800/50000 (26%)]      Loss: 1.063176  Accuracy: 61.19%
Train Epoch: 9 [19200/50000 (38%)]      Loss: 1.462891  Accuracy: 61.12%
Train Epoch: 9 [25600/50000 (51%)]      Loss: 1.227893  Accuracy: 61.29%
Train Epoch: 9 [32000/50000 (64%)]      Loss: 0.829324  Accuracy: 61.12%
Train Epoch: 9 [38400/50000 (77%)]      Loss: 1.199507  Accuracy: 61.10%
Train Epoch: 9 [44800/50000 (90%)]      Loss: 1.242885  Accuracy: 61.04%Test set: Average loss: 0.9322, Accuracy: 6954/10000 (69.54%)

训练完成,绘制训练历史...

 

 可视化模型预测结果...

浙大疏锦行 

相关文章:

  • 2024PLM系统实施案例:天水天轲零部件
  • 2025030给荣品PRO-RK3566开发板单独升级Android13的boot.img
  • vue+threeJs 绘制3D圆形
  • SpringBoot关于文件上传超出大小限制--设置了全局异常但是没有正常捕获的情况+捕获后没有正常响应返给前端
  • Pytorch Geometric官方例程pytorch_geometric/examples/link_pred.py环境安装教程及图数据集制作
  • OramaCore 是您 AI 项目、答案引擎、副驾驶和搜索所需的 AI 运行时。它包括一个成熟的全文搜索引擎、矢量数据库、LLM界面和更多实用程序
  • K8s工作流程与YAML实用指南
  • 编程之巅:语言的较量
  • 清华大学发Nature!光学工程+神经网络创新结合
  • vue2 + webpack 老项目升级 node v22 + vite + vue2 实战全记录
  • BaseTypeHandler用法-笔记
  • 【Unity】模型渐变技术 BlendShapes变形
  • UE5蓝图暴露变量,类似Unity中public一个变量,在游戏运行时修改变量实时变化和看向目标跟随目标Find Look at Rotation
  • 当 Redis 作为缓存使用时,如何保证缓存数据与数据库(或其他服务的数据源)之间的一致性?
  • BKP(备份寄存器)和 RTC(实时时钟)
  • Datatable和实体集合互转
  • go的select多路复用
  • 如何在 Vue.js 中集成 Three.js —— 创建一个旋转的 3D 立方体
  • 《算力觉醒!ONNX Runtime + DirectML如何点燃Windows ARM设备的AI引擎》
  • 优化版本,增加3D 视觉 查看前面的记录
  • 申请注册公司需要哪些条件/杭州seo网站排名
  • 在那些网站可以接兼职做/怎么提高百度搜索排名
  • 广州十大室内设计公司排名/抖音seo推荐算法
  • 深圳网站优讳化/百度推广注册
  • 英文网站设计制作/友情链接推广
  • 怎么做网站注册系统/市场调研分析