当前位置: 首页 > news >正文

OpenCV CUDA模块直方图计算------在 GPU 上计算输入图像的直方图(histogram)函数histEven()

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

该函数用于在 GPU 上计算输入图像的直方图(histogram)。它将像素值区间均匀划分为若干个 bin(桶),并统计每个 bin 中像素的数量。

  • 适用于 单通道图像(如灰度图或某个颜色通道)。
  • 使用等间距的分箱方式(即“均匀直方图”)。
  • 支持 8U 和 32S 类型的图像。

函数原型

void cv::cuda::histEven 
(InputArray  	src,OutputArray  	hist,int  	histSize,int  	lowerLevel,int  	upperLevel,Stream &  	stream = Stream::Null() 
) 		

参数

  • src:源图像。支持 CV_8U、CV_16U 或 CV_16S 类型的图像,并且通道数可以是 1 或 4。如果是 4 通道图像,则每个通道会分别进行处理。

  • hist:目标直方图,是一个具有 1 行、histSize 列、数据类型为 CV_32S 的数组。

  • histSize:直方图的大小(即 bin 的数量)。

  • lowerLevel:最低级 bin 的下界值(包含此值)。

  • upperLevel:最高级 bin 的上界值(不包含此值)。

  • stream:用于异步操作的 CUDA 流对象。

代码示例

#include <opencv2/cudaimgproc.hpp>
#include <opencv2/opencv.hpp>int main()
{// 读取图像cv::Mat h_src = cv::imread( "/media/dingxin/data/study/OpenCV/sources/images/Lenna.png", cv::IMREAD_GRAYSCALE );if ( h_src.empty() ){std::cerr << "无法加载图像!" << std::endl;return -1;}// 上传到 GPUcv::cuda::GpuMat d_src, d_hist;d_src.upload( h_src );// 设置直方图参数int histSize   = 256;  // 8-bit 图像有 256 个灰度级int lowerLevel = 0;int upperLevel = 256;// 创建输出直方图 Matd_hist.create( 1, histSize, CV_32SC1 );// 计算直方图cv::cuda::histEven( d_src, d_hist, histSize, lowerLevel, upperLevel );// 下载结果cv::Mat h_hist;d_hist.download( h_hist );// 打印直方图内容(可选)for ( int i = 0; i < histSize; ++i ){std::cout << "Bin[" << i << "] = " << h_hist.at< int >( i ) << std::endl;}return 0;
}

运行结果

Bin[0] = 0
Bin[1] = 0
Bin[2] = 0
Bin[3] = 0
Bin[4] = 0
Bin[5] = 0
Bin[6] = 0
Bin[7] = 0
Bin[8] = 0
Bin[9] = 0
Bin[10] = 0
Bin[11] = 0
Bin[12] = 0
Bin[13] = 0
Bin[14] = 0
Bin[15] = 0
Bin[16] = 0
Bin[17] = 0
Bin[18] = 0
Bin[19] = 0
Bin[20] = 0
Bin[21] = 0
Bin[22] = 0
Bin[23] = 0
Bin[24] = 0
Bin[25] = 0
Bin[26] = 0
Bin[27] = 0
Bin[28] = 0
Bin[29] = 0
Bin[30] = 0
Bin[31] = 0
Bin[32] = 0
Bin[33] = 0
Bin[34] = 0
Bin[35] = 0
Bin[36] = 0
Bin[37] = 0
Bin[38] = 0
Bin[39] = 45
Bin[40] = 0
Bin[41] = 0
Bin[42] = 0
Bin[43] = 388
Bin[44] = 0
Bin[45] = 0
Bin[46] = 1171
Bin[47] = 0
Bin[48] = 0
Bin[49] = 0
Bin[50] = 2211
Bin[51] = 0
Bin[52] = 0
Bin[53] = 3583
Bin[54] = 0
Bin[55] = 0
Bin[56] = 5472
Bin[57] = 0
Bin[58] = 0
Bin[59] = 6460
Bin[60] = 0
Bin[61] = 5922
Bin[62] = 0
Bin[63] = 0
Bin[64] = 5104
Bin[65] = 0
Bin[66] = 4325
Bin[67] = 0
Bin[68] = 3100
Bin[69] = 0
Bin[70] = 2479
Bin[71] = 0
Bin[72] = 2093
Bin[73] = 0
Bin[74] = 1730
Bin[75] = 0
Bin[76] = 1566
Bin[77] = 0
Bin[78] = 1469
Bin[79] = 0
Bin[80] = 1377
Bin[81] = 0
Bin[82] = 1345
Bin[83] = 0
Bin[84] = 1335
Bin[85] = 1367
Bin[86] = 0
Bin[87] = 1416
Bin[88] = 0
Bin[89] = 1479
Bin[90] = 1468
Bin[91] = 0
Bin[92] = 1465
Bin[93] = 1438
Bin[94] = 0
Bin[95] = 1328
Bin[96] = 1431
Bin[97] = 0
Bin[98] = 1465
Bin[99] = 1504
Bin[100] = 0
Bin[101] = 1522
Bin[102] = 1564
Bin[103] = 1605
Bin[104] = 0
Bin[105] = 1674
Bin[106] = 1604
Bin[107] = 1741
Bin[108] = 0
Bin[109] = 1774
Bin[110] = 2021
Bin[111] = 2398
Bin[112] = 2598
Bin[113] = 0
Bin[114] = 2673
Bin[115] = 2588
Bin[116] = 2403
Bin[117] = 2126
Bin[118] = 2027
Bin[119] = 1730
Bin[120] = 1676
Bin[121] = 0
Bin[122] = 1554
Bin[123] = 1522
Bin[124] = 1510
Bin[125] = 1529
Bin[126] = 1579
Bin[127] = 1536
Bin[128] = 1603
Bin[129] = 1542
Bin[130] = 1719
Bin[131] = 1795
Bin[132] = 1851
Bin[133] = 1796
Bin[134] = 1919
Bin[135] = 1916
Bin[136] = 2022
Bin[137] = 2198
Bin[138] = 2409
Bin[139] = 2650
Bin[140] = 2626
Bin[141] = 2629
Bin[142] = 2685
Bin[143] = 2411
Bin[144] = 4435
Bin[145] = 1980
Bin[146] = 1930
Bin[147] = 1925
Bin[148] = 1939
Bin[149] = 2058
Bin[150] = 2237
Bin[151] = 4821
Bin[152] = 2411
Bin[153] = 2506
Bin[154] = 2411
Bin[155] = 2507
Bin[156] = 4627
Bin[157] = 2240
Bin[158] = 2277
Bin[159] = 2346
Bin[160] = 4692
Bin[161] = 2352
Bin[162] = 2221
Bin[163] = 2278
Bin[164] = 4174
Bin[165] = 1798
Bin[166] = 1729
Bin[167] = 2888
Bin[168] = 1316
Bin[169] = 1285
Bin[170] = 2222
Bin[171] = 1066
Bin[172] = 1035
Bin[173] = 1955
Bin[174] = 1012
Bin[175] = 1883
Bin[176] = 941
Bin[177] = 998
Bin[178] = 1969
Bin[179] = 990
Bin[180] = 1979
Bin[181] = 971
Bin[182] = 1816
Bin[183] = 836
Bin[184] = 1502
Bin[185] = 651
Bin[186] = 1097
Bin[187] = 538
Bin[188] = 1020
Bin[189] = 487
Bin[190] = 886
Bin[191] = 458
Bin[192] = 1036
Bin[193] = 532
Bin[194] = 1093
Bin[195] = 1145
Bin[196] = 595
Bin[197] = 1227
Bin[198] = 628
Bin[199] = 1176
Bin[200] = 1129
Bin[201] = 595
Bin[202] = 1098
Bin[203] = 1009
Bin[204] = 527
Bin[205] = 999
Bin[206] = 1066
Bin[207] = 1124
Bin[208] = 616
Bin[209] = 1249
Bin[210] = 1236
Bin[211] = 598
Bin[212] = 1139
Bin[213] = 1145
Bin[214] = 947
Bin[215] = 835
Bin[216] = 319
Bin[217] = 567
Bin[218] = 452
Bin[219] = 411
Bin[220] = 364
Bin[221] = 296
Bin[222] = 142
Bin[223] = 225
Bin[224] = 213
Bin[225] = 133
Bin[226] = 94
Bin[227] = 59
Bin[228] = 56
Bin[229] = 41
Bin[230] = 28
Bin[231] = 14
Bin[232] = 10
Bin[233] = 6
Bin[234] = 8
Bin[235] = 0
Bin[236] = 1
Bin[237] = 0
Bin[238] = 1
Bin[239] = 0
Bin[240] = 0
Bin[241] = 0
Bin[242] = 2
Bin[243] = 0
Bin[244] = 0
Bin[245] = 2
Bin[246] = 0
Bin[247] = 0
Bin[248] = 0
Bin[249] = 0
Bin[250] = 0
Bin[251] = 0
Bin[252] = 0
Bin[253] = 0
Bin[254] = 0
Bin[255] = 0
  • 直方图数据分析
    总体观察:
    • 图像中很多灰度级没有像素(如 Bin[0] 到 Bin[38] 都是 0),说明图像中没有非常暗的区域。
    • 从 Bin[39] 开始出现非零值,说明图像主要集中在 中高亮度区域(约40~255之间)。
    • 中间部分(如 Bin[85]、Bin[144]、Bin[160] 等)有一些明显高峰,说明图像中存在较多的中等亮度或高亮度区域。
    • 最后几个 Bin(235 及以后)又开始减少,说明图像中纯白区域不多。

相关文章:

  • 缓存常见问题:缓存穿透、缓存雪崩以及缓存击穿
  • x86_64-apple-ios-simulator 错误
  • 分析rds的空间占用
  • VSCode远程开发-本地SSH隧道保存即时修改
  • 5.28 孔老师 nlp讲座
  • AugmentFree:解除 AugmentCode 限制的终极方案 如何快速清理vscode和AugmentCode缓存—windows端
  • 互联网大厂Java求职面试:AI大模型融合下的企业知识库架构设计与性能优化
  • 多模态大语言模型arxiv论文略读(九十九)
  • ZigBee 协议:开启物联网低功耗通信新时代
  • 在 Ubuntu 上安装 NVM (Node Version Manager) 的步骤
  • 从“固定“到“流动“:移动充电如何重塑用户体验?
  • 每日算法 -【Swift 算法】盛最多水的容器
  • 深入理解 SQL 的 JOIN 查询:从基础到高级的第一步
  • Java网络编程与Socket安全权限详解
  • Perforce P4产品简介:无限扩展+全球协作+安全管控+工具集成(附下载)
  • RFID测温芯片助力新能源产业安全与能效提升
  • android无root抓包(PCAPdroid)
  • Java消息队列与安全实战:谢飞机的烧饼摊故事
  • 智能外呼系统中 NLP 意图理解的工作原理与技术实现
  • 小型语言模型:为何“小”才是“大”?
  • 郑州做网站公司有多少钱/接广告推广的平台
  • 做黑彩网站/今日国内新闻最新消息10条新闻
  • 传奇世界新开服网站/南京seo排名扣费
  • wordpress 显示不全/北京网站seo费用
  • wordpress滚动条插件下载/抚州seo排名
  • 宜春制作网站公司哪家好/竞价被恶意点击怎么办