trl + 大模型reward训练
一、定义
1.强化学习-reward训练
2.reward 模型重新加载与训练
二、实现
https://www.kaggle.com/code/neuqsnail/open-llama-finetune-sequenceclassification/notebook#Save-and-reload-Model
1.trl 强化训练-reward训练案例
#注意:lora训练需要 task_type 为 SEQ_CLS
1. 下载trl 训练脚本
2. 指令训练
python examples/scripts/reward_modeling.py \
--model_name_or_path Qwen/Qwen2-0.5B-Instruct \
--dataset_name trl-lib/ultrafeedback_binarized \
--output_dir Qwen2-0.5B-Reward-LoRA \
--per_device_train_batch_size 8 \
--num_train_epochs 1 \
--gradient_checkpointing True \
--learning_rate 1.0e-4 \
--logging_steps 25 \
--eval_strategy steps \
--eval_steps 50 \
--max_length 2048 \
--task_type SEQ_CLS\
--use_peft \
--lora_r 32 \
--lora_alpha 16
对应代码
import warnings
import torch
from datasets import load_dataset
from transformers import AutoModelForSequenceClassification, AutoTokenizer, HfArgumentParser
from trl import (
ModelConfig,
RewardConfig,
RewardTrainer,
ScriptArguments,
get_kbit_device_map,
get_peft_config,
get_quantization_config,
setup_chat_format,
)
if __name__ == "__main__":
parser = HfArgumentParser((ScriptArguments, RewardConfig, ModelConfig))
script_args, training_args, model_args = parser.parse_args_into_dataclasses()
training_args.gradient_checkpointing_kwargs = dict(use_reentrant=False)
################
# Model & Tokenizer
################
torch_dtype = (
model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype)
)
quantization_config = get_quantization_config(model_args)
model_kwargs = dict(
revision=model_args.model_revision,
device_map=get_kbit_device_map() if quantization_config is not None else None,
quantization_config=quantization_config,
use_cache=False if training_args.gradient_checkpointing else True,
torch_dtype=torch_dtype,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code, use_fast=True
)
model = AutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path, num_labels=1, trust_remote_code=model_args.trust_remote_code, **model_kwargs
)
# Align padding tokens between tokenizer and model
model.config.pad_token_id = tokenizer.pad_token_id
# If post-training a base model, use ChatML as the default template
if tokenizer.chat_template is None:
model, tokenizer = setup_chat_format(model, tokenizer)
if model_args.use_peft and model_args.lora_task_type != "SEQ_CLS":
warnings.warn(
"You are using a `task_type` that is different than `SEQ_CLS` for PEFT. This will lead to silent bugs"
" Make sure to pass --lora_task_type SEQ_CLS when using this script with PEFT.",
UserWarning,
#reward 应该是SEQ_CLS 类型
)
##############
# Load dataset
##############
dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config)
##########
# Training
##########
trainer = RewardTrainer(
model=model,
processing_class=tokenizer,
args=training_args,
train_dataset=dataset[script_args.dataset_train_split].select(range(50)),
eval_dataset=dataset[script_args.dataset_test_split].select(range(50)) if training_args.eval_strategy != "no" else None,
peft_config=get_peft_config(model_args),
)
trainer.train()
############################
# Save model and push to Hub
############################
trainer.save_model(training_args.output_dir)
if training_args.eval_strategy != "no":
metrics = trainer.evaluate()
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
# Save and push to hub
trainer.save_model(training_args.output_dir)
if training_args.push_to_hub:
trainer.push_to_hub(dataset_name=script_args.dataset_name)
#输入:数据处理: 需要字段chosen、rejected 两个字段
目标是: 对两者进行估分,并使选中的概率大于拒绝的概率,越大越好。
def _tokenize(batch: dict[str, list[Any]], tokenizer: "PreTrainedTokenizerBase") -> dict[str, list[Any]]:
"""Tokenize a batch from a reward modelling dataset."""
new_examples = {
"input_ids_chosen": [],
"attention_mask_chosen": [],
"input_ids_rejected": [],
"attention_mask_rejected": [],
}
for chosen, rejected in zip(batch["chosen"], batch["rejected"]):
tokenized_chosen = tokenizer(chosen)
tokenized_rejected = tokenizer(rejected)
new_examples["input_ids_chosen"].append(tokenized_chosen["input_ids"])
new_examples["attention_mask_chosen"].append(tokenized_chosen["attention_mask"])
new_examples["input_ids_rejected"].append(tokenized_rejected["input_ids"])
new_examples["attention_mask_rejected"].append(tokenized_rejected["attention_mask"])
return new_examples
#损失函数
rewards_chosen = model(
input_ids=inputs["input_ids_chosen"],
attention_mask=inputs["attention_mask_chosen"],
return_dict=True,
)["logits"]
rewards_rejected = model(
input_ids=inputs["input_ids_rejected"],
attention_mask=inputs["attention_mask_rejected"],
return_dict=True,
)["logits"]
loss = -nn.functional.logsigmoid(rewards_chosen - rewards_rejected).mean()
2.模型重新加载
from peft import AutoPeftModelForSequenceClassification
from transformers import AutoTokenizer
import torch
adapter_model_name = "Qwen2-0.5B-Reward-LoRA"
model = AutoPeftModelForSequenceClassification.from_pretrained("Qwen2-0.5B-Reward-LoRA", num_labels=1)
#和训练保持一致
tokenizer = AutoTokenizer.from_pretrained(
"E:\\Qwen2.5-0.5B-Instruct", use_fast=True
)
# Align padding tokens between tokenizer and model 注意需要和训练保持一致
model.config.pad_token_id = tokenizer.pad_token_id
print(model)