当前位置: 首页 > news >正文

DataFrame 和 Dataset的对比理解

在 Spark 中,DataFrame 和 Dataset 是两种不同的数据结构,它们的关系需要从数据模型类型系统两个层面理解,而不是简单的 “行” 或 “列” 的包含关系。

一、核心定义与关系

  1. DataFrame = Dataset[Row]

    • DataFrameDataset的一个特例,其元素类型固定为Row(即Dataset[Row])。
    • Row代表一行数据(如数据库中的一条记录),因此DataFrame本质上是多行 Row 的集合,每行包含多个字段(列)。
  2. Dataset 的泛型本质

    • Dataset[T]是强类型的数据集,T可以是任意类型:
      • T=Row时,Dataset[Row]就是DataFrame
      • T=自定义类(如Person)时,Dataset[Person]是强类型的对象集合。

二、从数据模型看结构

以 “学生信息表” 为例:

姓名(name)年龄(age)成绩(scores)
Alice20[90, 85, 95]
Bob22[80, 82, 78]
  1. DataFrame 的结构

    • 每一行是一个Row对象,包含 3 个字段(列)。
    • 整个 DataFrame 是多行 Row 的集合,类似二维表格(行 × 列)。
  2. Dataset [Person] 的结构

    • 若定义case class Person(name: String, age: Int, scores: Seq[Int]),则每个元素是Person对象,包含 3 个属性(类似行的字段)。
    • 整个 Dataset 是多个 Person 对象的集合,每个对象内部封装了行数据。

三、为什么 DataFrame 被定义为 Dataset [Row]?

  1. 历史演进原因

    • Spark 早期版本先推出DataFrame(基于 Row 的无类型接口),后来引入Dataset(强类型接口)。
    • 为了兼容旧接口,DataFrame被定义为Dataset[Row]的别名,本质是对 Row 集合的封装。
  2. 类型系统的统一

    • Dataset是更通用的抽象:
      • DataFrame(无类型) = Dataset[Row](弱类型)。
      • 强类型Dataset[T] = 自定义类型的对象集合(如Dataset[Person])。

四、两者的核心区别

维度DataFrame(Dataset[Row])Dataset [T](强类型)
数据类型元素是Row(无类型,字段通过索引 / 名称访问)元素是自定义类型T(编译时类型安全)
类型检查运行时检查(如字段类型错误)编译时检查(IDE 提示类型错误)
API 风格接近 SQL(如df.select("name")接近 Scala 集合(如ds.filter(_.age > 20)
性能与 Dataset 相当(底层优化一致)部分场景因类型推导更高效

五、如何理解 “行” 与 “列” 的关系?

  1. DataFrame 中的 “行” 与 “列”

    • :每个Row对象代表一行数据(如 Alice 的信息)。
    • :每个Row中的字段(如 name、age)是列的定义,由 Schema 统一管理。
  2. DataFrame 与 Dataset 的包含关系

    • DataFrame 是 Dataset 的子集:所有 DataFrame 都是 Dataset,但 Dataset 不一定是 DataFrame(如Dataset[Person])。
    • 两者的区别在于元素类型:DataFrame 的元素是Row,而 Dataset 的元素可以是任意类型T

六、总结:一句话理清关系

  • DataFrame 是 “多行 Row 的集合”,每行包含多个字段(列),本质是Dataset的特例(Dataset[Row])。
  • Dataset 是更通用的抽象,可存储任意类型的对象(如 Row、自定义类),每个对象代表一行数据,对象的属性对应列。

七、实际开发中的选择

  • 使用 DataFrame

    • 处理动态 Schema 数据(如 JSON、CSV)。
    • 更习惯 SQL 风格的 API(如selectfilter)。
  • 使用强类型 Dataset [T]

    • 追求编译时类型安全。
    • 希望用面向对象方式操作数据(如ds.map(person => person.name))。

通过as[T]方法可灵活转换两者:

scala

val df: DataFrame = spark.read.csv("students.csv")
val ds: Dataset[Person] = df.as[Person]  // 转换为强类型Dataset

相关文章:

  • vue2中el-table 实现前端分页
  • 第十五章:数据治理之数据目录:摸清家底,建立三大数据目录
  • 大数据如何让智能物流和仓储管理更高效?从预测到自动调度
  • Qwen2.5 VL 语言生成阶段(4)
  • 【Python 中 lambda、map、filter 和 reduce】详细功能介绍及用法总结
  • 2025年上半年软件架构师考试回忆版【持续更新】
  • VS编码访问Mysql数据库
  • spike:一款协议模糊测试器工具包!全参数详细教程!Kali Linux教程!
  • 构建跨平台C/C++项目的基石:现代构建套件设计指南
  • 趋势触发策略
  • 关于spring @Bean里调用其他产生bean的方法
  • vFile文件的精读
  • 酷柚易汛ERP仓储物流解决方案
  • 怎样把B站的视频保存到本地
  • NodeRAG: 基于异构节点的基于图的RAG结构
  • 红黑树简单模拟实现
  • 复杂度讲解
  • 金融科技应用:基于XGBoost与SHAP的信用评分模型构建全流程解析
  • 【项目需求分析文档】:在线音乐播放器(Online-Music)
  • 串扰与反射对信号完整性的影响
  • 西安网站建设专业/网站统计代码
  • 网站建设的计划书/百度站长工具网站
  • 西安seo网站关键词优化/整合营销传播的六种方法
  • glitch做网站/青岛seo计费
  • 公司手机网站效果图/军事新闻最新消息今天
  • 成都网站建设制作设计/2022新闻热点事件简短30条