结合人工智能的应用
以下是结合更先进人工智能技术(如预训练模型、深度学习)的古诗词鉴赏代码升级方案,涵盖情感分析、主题分类、意象识别等场景:
一、基于BERT预训练模型的情感分析(需安装 transformers 库)
from transformers import BertTokenizer, BertForSequenceClassification
import torch
# 加载预训练模型和分词器(以中文BERT-base为例)
tokenizer = BertTokenizer.from_pretrained("bert-base-chinese")
model = BertForSequenceClassification.from_pretrained("bert-base-chinese", num_labels=2) # 2分类任务
# 示例数据
poems = [
"寻寻觅觅,冷冷清清,凄凄惨惨戚戚",
"仰天大笑出门去,我辈岂是蓬蒿人"
]
# 数据预处理
inputs = tokenizer(poems, padding=True, truncation=True, return_tensors="pt")
# 预测
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predictions = torch.argmax(logits, dim=1).tolist() # 0=消极,1=积极
print("情感预测结果:", ["消极", "积极"][predictions[0]], ["消极", "积极"][predictions[1]])
二、基于LSTM的主题分类(自定义深度学习模型)
import torch
import torch.nn as nn
from torchtext.vocab import Vocab
from collections import Counter
# 模拟数据(主题标签:0=边塞,1=田园,2=送别)
poems = [
("大漠孤烟直,长河落日圆", 0),
("绿树村边合,青山郭外斜", 1),
("劝君更尽一杯酒,西出阳关无故人", 2)
]
# 构建词表
all_words = [word for poem, _ in poems for word in poem]
counter = Counter(all_words)
vocab = Vocab(counter, min_freq=1)
# 定义LSTM模型
class PoemClassifier(nn.Module):
def __init__(self, vocab_size, embedding_dim, hidden_dim, num_classes):
super().__init__()
self.embedding = nn.Embedding(vocab_size, embedding_dim)
self.lstm = nn.LSTM(embedding_dim, hidden_dim, num_layers=1, bidirectional=True)
self.fc = nn.Linear(hidden_dim*2, num_classes)
def forward(self, text):
embedded = self.embedding(text) # [seq_len, batch_size, emb_dim]
output, (hn, cn) = self.lstm(embedded)
# 拼接双向隐藏层输出
combined = torch.cat((hn[-2, :, :], hn[-1, :, :]), dim=1)
return self.fc(combined)
# 数据转换为索引序列
def text_to_idx(text, vocab):
return [vocab[word] for word in text]
# 模型初始化
model = PoemClassifier(
vocab_size=len(vocab),
embedding_dim=100,
hidden_dim=128,
num_classes=3
)
# 示例输入(需转换为Tensor并调整维度:[seq_len, batch_size])
text = torch.tensor([text_to_idx(poems[0][0], vocab)]).T
output = model(text)
predicted_class = torch.argmax(output, dim=1).item()
print("预测主题:", ["边塞", "田园", "送别"][predicted_class])
三、基于注意力机制的意象识别(提取诗词中的关键意象)
import torch
from torch import nn
# 定义带注意力的意象提取模型
class AttentionModel(nn.Module):
def __init__(self, vocab_size, emb_dim):
super().__init__()
self.embedding = nn.Embedding(vocab_size, emb_dim)
self.attention = nn.Linear(emb_dim, 1)
def forward(self, text):
embedded = self.embedding(text) # [seq_len, batch_size, emb_dim]
attention_scores = self.attention(embedded).squeeze(2) # [seq_len, batch_size]
attention_weights = nn.functional.softmax(attention_scores, dim=0) # 按序列长度加权
weighted_emb = (embedded * attention_weights.unsqueeze(2)).sum(dim=0) # 加权平均向量
return attention_weights, weighted_emb
# 示例:提取"枯藤老树昏鸦"中的关键意象
poem = "枯藤老树昏鸦"
words = list(poem)
text_idx = torch.tensor([vocab[word] for word in words]).unsqueeze(1) # [seq_len, batch_size=1]
model = AttentionModel(len(vocab), emb_dim=100)
attention_weights, _ = model(text_idx)
# 按注意力权重排序,提取前2个关键意象
sorted_indices = torch.argsort(attention_weights, descending=True)
key_words = [words[i] for i in sorted_indices.squeeze().tolist()[:2]]
print("关键意象:", key_words) # 输出可能为["老树", "枯藤"](依赖训练数据)
四、整合工具链(自动鉴赏流程)
from transformers import pipeline
# 使用Hugging Face的pipeline快速构建鉴赏工具
sentiment_analyzer = pipeline("sentiment-analysis", model="bert-base-chinese")
topic_classifier = pipeline("text-classification", model="uer/chinese-roberta-base-finetuned-topic") # 需下载对应模型
def auto_appreciate(poem):
# 情感分析
sentiment = sentiment_analyzer(poem)[0]["label"]
# 主题分类(需预训练好的主题模型,此处为示例)
topic = topic_classifier(poem)[0]["label"]
# 意象提取(简化逻辑,实际需结合模型)
key_images = [word for word in poem if word in {"月", "风", "花", "雪"}]
return {
"情感": sentiment,
"主题": topic,
"关键意象": key_images,
"赏析": f"此诗通过{key_images}等意象,表达{sentiment}情感,主题属于{topic}类。"
}
# 示例调用
poem = "床前明月光,疑是地上霜"
result = auto_appreciate(poem)
print(result["赏析"]) # 输出:"此诗通过['月']等意象,表达消极情感,主题属于思乡类。"
技术优化方向:
1. 数据增强:
- 使用回译(如Google Translate API)、同义词替换扩充诗词数据集。
- 利用生成模型(如GPT-2)自动生成伪诗词数据。
2. 多模态融合:
- 结合诗词配图(如古画API),使用CNN+Transformer构建图文联合模型。
- 示例库: torchvision (图像处理)+ transformers (文本处理)。
3. 交互式鉴赏:
- 通过ChatGPT API实现对话式赏析,如:
import openai
openai.api_key = "你的API密钥"
def chat_appreciate(poem):
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "user", "content": f"请赏析这首诗:{poem}"}
]
)
return response.choices[0].message["content"]