当前位置: 首页 > news >正文

Python训练营---Day33

知识点回顾:
  1. PyTorch和cuda的安装
  2. 查看显卡信息的命令行命令(cmd中使用)
  3. cuda的检查
  4. 简单神经网络的流程
    1. 数据预处理(归一化、转换成张量)
    2. 模型的定义
      1. 继承nn.Module类
      2. 定义每一个层
      3. 定义前向传播流程
    3. 定义损失函数和优化器
    4. 定义训练流程
    5. 可视化loss过程

预处理补充:

注意事项:

1. 分类任务中,若标签是整数(如 0/1/2 类别),需转为long类型(对应 PyTorch 的torch.long),否则交叉熵损失函数会报错。

2. 回归任务中,标签需转为float类型(如torch.float32)。

作业:今日的代码,要做到能够手敲。这已经是最简单最基础的版本了。

import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.preprocessing import MinMaxScaler
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import numpy as npif torch.cuda.is_available():print("CUDA可用!")# 获取可用的CUDA设备数量device_count = torch.cuda.device_count()print(f"可用的CUDA设备数量: {device_count}")# 获取当前使用的CUDA设备索引current_device = torch.cuda.current_device()print(f"当前使用的CUDA设备索引: {current_device}")# 获取当前CUDA设备的名称device_name = torch.cuda.get_device_name(current_device)print(f"当前CUDA设备的名称: {device_name}")# 获取CUDA版本cuda_version = torch.version.cudaprint(f"CUDA版本: {cuda_version}")
else:print("CUDA不可用。")# 加载4特征,3分类的鸢尾花数据集
iris = load_iris()
X = iris.data  # 特征数据
y = iris.target  # 标签数据# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# # 打印下尺寸
# print(X_train.shape)
# print(y_train.shape)
# print(X_test.shape)
# print(y_test.shape)# 归一化数据,神经网络对于输入数据的尺寸敏感,归一化是最常见的处理方式
scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test) #确保训练集和测试集是相同的缩放# 转换为PyTorch张量
X_train=torch.FloatTensor(X_train) 
X_test=torch.FloatTensor(X_test) 
y_train=torch.LongTensor(y_train) 
y_test=torch.LongTensor(y_test) # print(X_train.shape)
# print(y_train.shape)
# print(X_test.shape)
# print(y_test.shape)class MLP(nn.Module): # 定义一个多层感知机MLP模型,继承nn.Module类def __init__(self):super(MLP,self).__init__() #调用父类的构造函数self.fc1=nn.Linear(4,10) #输入层到隐藏层,4个特征,10个神经元self.relu=nn.ReLU() #激活函数self.fc2=nn.Linear(10,3) #隐藏层到输出层,10个神经元,3个类别def forward(self,x): #前向传播out=self.fc1(x) #输入层到隐藏层out=self.relu(out) #激活函数out=self.fc2(out) #隐藏层到输出层return out #返回输出层的结果model=MLP() #实例化模型criterion=nn.CrossEntropyLoss() #定义损失函数,交叉熵损失函数,适用于多分类问题optimizer=optim.SGD(model.parameters(),lr=0.01) #定义优化器,随机梯度下降,学习率为0.01num_epochs=20000 #定义训练轮数
losses=[] #定义一个列表,用于存储损失值
for epoch in range(num_epochs):outputs=model.forward(X_train) #前向传播,得到输出层的结果loss=criterion(outputs,y_train) #计算损失值,y_train是真实标签,outputs是模型的预测值losses.append(loss.item()) #记录损失值optimizer.zero_grad() #清空梯度loss.backward() #反向传播,计算梯度optimizer.step() #更新参数if (epoch+1)%1000==0: #每10000轮输出一次损失值print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')import matplotlib.pyplot as plt
# 可视化损失曲线
plt.plot(range(num_epochs), losses)
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Training Loss over Epochs')
plt.show()

http://www.dtcms.com/a/206042.html

相关文章:

  • 单一职责原则 (Single Responsibility Principle, SRP)
  • 云原生安全 SaaS :从基础到实践
  • 如何构建一个简单的AI Agent(极简指南)
  • Python训练营打卡——DAY33(2025.5.22)
  • 国产数据库:tidb专题
  • 解决androidstudio不能识别夜神模拟器的问题
  • Linux开发板串口终端会限制命令字符数并且循环覆盖
  • 腾讯音乐一面
  • (高级)高级前端开发者指南:框架运用与综合实战
  • Linux内核IO与网络协议栈全景与源码追踪:知其然且知其所以然
  • 计算机视觉与深度学习 | 用于图像分割的自监督学习(Self-Supervised Learning)方法综述
  • 【web应用】vue3前端框架怎么修改logo?
  • Windows下PyCharm2025的运行卡顿的问题
  • Spark入门秘籍
  • spark-Catalyst 优化器和 Tungsten 执行引擎介绍
  • 测量尺子:多功能测量工具,科技改变生活
  • Ubuntu 新建用户
  • Golang 内存模型小结
  • Docker实战
  • Linux下的Socket编程
  • 小白的进阶之路系列之三----人工智能从初步到精通pytorch计算机视觉详解上
  • React+Taro 微信小程序做一个页面,背景图需贴手机屏幕最上边覆盖展示
  • 桥接智能制造:PROFINET与Devicenet混合架构赋能汽车擦净机器人升级
  • java每日精进 5.22【多数据源(读写分离)、事务】
  • 觉醒三境:在敦煌的风沙中寻找生命的纹路
  • 火山引擎火山云带宽价格
  • 【大模型面试每日一题】Day 26:从伦理角度,大模型可能存在哪些潜在风险?技术上如何实现内容安全控制(如RLHF、红队测试)?
  • Ubuntu-多显示器黑屏问题及nvidia显卡驱动安装
  • 当物联网“芯”闯入纳米世界:ESP32-S3驱动的原子力显微镜能走多远?
  • 自制操作系统day7(获取按键编码、FIFO缓冲区、鼠标、键盘控制器(Keyboard Controller, KBC)、PS/2协议)