当前位置: 首页 > news >正文

解除diffusers库的prompt长度限制(SDXL版)

 2025-5-21 注:本文只提供思路,没有解决“权重识别”、“BREAK”问题。

要想实现与webui一样的绘图效果与无限prompt,可参考diffusers/examples/community/lpw_stable_diffusion_xl.py

1、上代码

from diffusers import StableDiffusionXLPipeline,EulerAncestralDiscreteScheduler# 1. 加载模型
config_path = "anime_illust_diffusion_xl"
model_id="anime_illust_diffusion_xl/animeIllustDiffusion_v08.safetensors"
pipe = StableDiffusionXLPipeline.from_single_file(model_id, dtype=torch.bfloat16,config=config_path,local_files_only=True)pipe = pipe.to("cuda") # 2. 准备输入图像和提示词
#======================================
clip_skip = 1prompt = 40 * "1girl, solo, black background,(best quality:1.5)" # 超出77长度限制
negative_prompt = "worst quality, low quality, multi views"max_length = pipe.tokenizer.model_max_length
tokenizers = [pipe.tokenizer,pipe.tokenizer_2]
text_encoders = [pipe.text_encoder,pipe.text_encoder_2]
prompts = [prompt,prompt]
negative_prompts = [negative_prompt,negative_prompt]prompt_embeds_list = []
negative_prompt_embeds_list= []for prompt,negative_prompt, tokenizer, text_encoder in zip(prompts,negative_prompts, tokenizers, text_encoders):input_ids = tokenizer(prompt, return_tensors="pt").input_idsinput_ids = input_ids.to("cuda")negative_ids =tokenizer(negative_prompt, truncation=False, padding="max_length", max_length=input_ids.shape[-1], return_tensors="pt").input_ids                                                                                                     negative_ids = negative_ids.to("cuda")# 分段处理promptconcat_embeds = [] neg_embeds = []for i in range(0, input_ids.shape[-1], max_length):embeds_1 = text_encoder(input_ids[:, i: i + max_length], output_hidden_states=True)pooled_prompt_embeds = embeds_1[0]concat_embeds.append(embeds_1.hidden_states[-(clip_skip+2)])embeds_2 = text_encoder(negative_ids[:, i: i + max_length],output_hidden_states=True)negative_pooled_prompt_embeds = embeds_2[0]neg_embeds.append(embeds_2.hidden_states[-2])# 拼接text_encoder结果# 例:(1,77,768)+(1,22,768) = (1,99,768)prompt_embeds = torch.cat(concat_embeds, dim=1)negative_prompt_embeds = torch.cat(neg_embeds, dim=1)prompt_embeds_list.append(prompt_embeds)negative_prompt_embeds_list.append(negative_prompt_embeds)# 拼接两个text_encoder的特征
# 例:(1,99,768)+(1,99,1280) = (1,99,2048)
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)#=====================================# 3. 设置生成参数
num_inference_steps = 28  # 推理步数,可根据需要调整
guidance_scale = 7     # 引导比例,控制生成图像与提示的匹配程度
generator = torch.Generator("cuda").manual_seed(31)# 4. 执行生成
with torch.no_grad():images = pipe(#prompt=prompt,#negative_prompt=negative_prompt,prompt_embeds = prompt_embeds, pooled_prompt_embeds = pooled_prompt_embeds,negative_prompt_embeds = negative_prompt_embeds, negative_pooled_prompt_embeds = negative_pooled_prompt_embeds,height = 1216,width= 832,num_inference_steps=num_inference_steps,guidance_scale=guidance_scale,clip_skip=clip_skip,num_images_per_prompt=2,generator = generator).imagesprint(type(images))
# 5. 保存结果
for id in range(len(images)):images[id].save(f"output_image_{id}.png")

 2、分析

需要准备下面四样东西:

        prompt_embeds   # 正向提示词编码

        pooled_prompt_embeds   # 正向提示词编码的全局池化

        negative_prompt_embeds   # 负向提示词编码

        negative_pooled_prompt_embeds   # 负向提示词的全局池化

前置知识:

1. sdxl有两个text_encoder,不妨设为t1,t2:

        将prompt输入t1,得到768维的数据;输入t2,得到1280维的数据

        最后送入Unet进行cross_attention的,是拼接后2048维的数据

        t1、t2的输入限制了大小,最大为77

2. pooled_prompt_embeds,这玩意的原理我不懂,不过生成方式在上面代码里有写

解决方案

把长度为99的prompt,拆分为77+22,分别输入text_encoder,然后将结果拼接

相关文章:

  • vue原生table表格实现动态添加列,一行添加完换行继续添加。el-select输入框背景颜色根据所选内容不同而改变
  • 深入解读RTP协议:RFC 3550的技术分析与应用
  • 在线地图瓦片URL
  • Spring Framework 的 spring-core 和 Spring Security 兼容版本
  • springboot3+vue3融合项目实战-大事件文章管理系统-自定义校验
  • 预警功能深度测评:如何用系统降低设备突发故障率?
  • 基于 STM32 的 PC ARGB 风扇控制器设计与实现
  • 工作安排小K
  • Elasticsearch生产环境性能调优指南
  • Unity中GPU Instancing使用整理
  • 全方位详解微服务架构中的Service Mesh(服务网格)
  • 互联网大厂Java求职面试:Spring Cloud微服务架构与AI集成挑战
  • 如何在 Android 手机和平板电脑上下载应用程序
  • ATT Global赞助非小号全球行,引领RWA创新浪潮
  • springboot 1.x2.x依赖spring版本
  • MySQL 5.7 实战:JSON 字段提取、Base64 解码与引号问题全解析
  • 无人机电子防抖技术要点概述!
  • 20个关于Java编程语言的常见问题
  • Redis SETNX:分布式锁与原子性操作的核心
  • SPL做量化---PSY(心理线)