当前位置: 首页 > news >正文

Retrieval-Augmented Generation for LargeLanguage Models: A Survey

标题:Retrieval-Augmented Generation for Large Language Models: A Survey

作者:Yunfan Gaoa , Yun Xiongb , Xinyu Gaob , Kangxiang Jiab , Jinliu Panb , Yuxi Bic , Yi Daia , Jiawei Suna , Meng Wangc , and Haofen Wang

1. By referencing external knowledge, RAG effectively reduces the problem of generating factually incorrect content. Its integration into LLMs has resulted in widespread adoption, establishing RAG as a key technology in advancing chatbots and enhancing the suitability of LLMs for real-world applications

2. The RAG research paradigm is continuously evolving, and we categorize it into three stages: Naive RAG, Advanced RAG, and Modular RAG

3. The Naive RAG:

Indexing starts with the cleaning and extraction of raw data

Retrieval. Upon receipt of a user query, the RAG system employs the same encoding model utilized during the indexing phase to transform the query into a vector representation.

Generation. The posed query and selected documents are synthesized into a coherent prompt to which a large language model is tasked with formulating a response.

4. 

Advanced RAG introduces specific improvements to overcome the limitations of Naive RAG. Focusing on enhancing retrieval quality, it employs pre-retrieval and post-retrieval strategies.

5. 

Pre-retrieval process. In this stage, the primary focus is on optimizing the indexing structure and the original query. The goal of optimizing indexing is to enhance the quality of the content being indexed.

Post-Retrieval Process. Once relevant context is retrieved, it’s crucial to integrate it effectively with the query

6. Innovations such as the Rewrite-Retrieve-Read [7]model leverage the LLM’s capabilities to refine retrieval queries through a rewriting module and a LM-feedback mechanism to update rewriting model

7. RAG is often compared with Fine-tuning (FT) and prompt engineering. Each method has distinct characteristics as illustrated in Figure 4.

8. In the context of RAG, it is crucial to efficiently retrieve relevant documents from the data source. There are several key issues involved, such as the retrieval source, retrieval granularity, pre-processing of the retrieval, and selection of the corresponding embedding model.

http://www.dtcms.com/a/20134.html

相关文章:

  • 用C语言解决逻辑推理问题:找出谋杀案凶手
  • C++游戏开发
  • 关于DispatchTime和DispatchWallTime
  • SQL sever数据导入导出实验
  • 【kafka系列】消费者
  • ubuntu /dev/ttyUSB1重命名为/dev/ttyUSB0。
  • CentOS 7.8 安装MongoDB 7教程
  • 【ROS2综合案例】乌龟跟随
  • 【信息学奥赛一本通 C++题解】1281:最长上升子序列
  • 反转链表2(92)
  • ThreadLocalRandom原理剖析
  • Spring Cloud — 深入了解Eureka、Ribbon及Feign
  • 2.【线性代数】——矩阵消元
  • C++:高度平衡二叉搜索树(AVLTree) [数据结构]
  • 【Cocos TypeScript 零基础 15.1】
  • 如何在Spring Boot中配置分布式配置中心
  • 2025-02-13 学习记录--C/C++-PTA 7-17 爬动的蠕虫
  • c#自动更新-源码
  • WPF的Prism框架的使用
  • 算法刷题-链表系列-两两交换链表结点、删除链表的倒数第n个元素
  • C#打印设计器
  • 72.git指南(简单)
  • SpringCloud系列教程:微服务的未来 (五)枚举处理器、JSON处理器、分页插件实现
  • DeepSeek24小时写作机器人,持续创作高质量文案
  • pnpm的使用
  • Python 字典思维导图
  • 制药行业 BI 可视化数据分析方案
  • dedecms 开放重定向漏洞(附脚本)(CVE-2024-57241)
  • Docker学习
  • dma_ddr 的编写 通过mig控制ddr3