无监督学习在医疗AI领域的前沿:多模态整合、疾病亚型发现与异常检测
引言
人工智能技术在医疗领域的应用正经历着从辅助决策向深度赋能的转变。无监督学习作为人工智能的核心范式之一,因其无需大量标注数据、能够自动发现数据内在规律的特性,在医疗AI领域展现出独特优势。尤其在2025年,无监督学习技术在医疗AI应用中呈现出多模态整合、疾病亚型发现、异常检测等多方面的显著突破,为精准医疗提供了新的技术路径。
多模态与跨模态学习
TANGLE框架:基因表达与病理切片的多模态自监督学习
哈佛大学的研究团队开发的TANGLE框架代表了多模态无监督学习在医疗领域的重大突破。该框架通过结合基因表达数据与病理切片图像,实现了多模态自监督学习,为计算病理学带来了革命性变化。
TANGLE框架的核心创新在于利用转录组学数据指导全切片图像的嵌入表示,通过跨模态对比学习机制,使不同模态的数据在特征空间中实现有效对齐。这种多模态整合方法在少样本分类和原型分类等任务中表现出显著优于传统监督学习模型的性能,为医疗AI领域提供了一种新的范式。
研究表明,TANGLE框架在计算病理学分析能力方面取得了重大突破。通过整合基因表达数据和病理切片图像,该框架能够更全面地捕捉疾