LOJ 6346 线段树:关于时间 Solution
Description
给定序列 a = ( a 1 , a 2 , ⋯ , a n ) a=(a_1,a_2,\cdots,a_n) a=(a1,a2,⋯,an),另有一个存储三元组的列表 L L L.
有 m m m 个操作分两种:
- add ( l , r , k ) \operatorname{add}(l,r,k) add(l,r,k):将 ( l , r , k ) (l,r,k) (l,r,k) 插入到 L L L 末尾.
- query ( l , r ) \operatorname{query}(l,r) query(l,r):求 ∑ i = l r a i \sum\limits_{i=l}^r a_i i=l∑rai.
每次操作后,对于 L L L 中每一项 ( l , r , k ) (l,r,k) (l,r,k),将 a l ∼ a r a_l\sim a_r al∼ar 加上 k k k.
Limitations
1 ≤ n , m ≤ 1 0 5 1\le n,m\le 10^5 1≤n,m≤105
1 ≤ l ≤ r ≤ n 1\le l\le r\le n 1≤l≤r≤n
1 ≤ a i ≤ 1 0 4 1\le a_i\le 10^4 1≤ai≤104
∣ k ∣ ≤ 1 0 4 |k|\le 10^4 ∣k∣≤104
0.2 s , 256 MB \textcolor{red}{0.2\text{s}},256\text{MB} 0.2s,256MB
Solution
直接硬做是无法维护的,考虑每次修改后立刻计算贡献.
下设当前为第 i i i 次操作.
- 如果是修改,则直到最后一次操作前, a l ∼ a r a_l\sim a_r al∼ar 会被加 ( m − i ) (m-i) (m−i) 次 k k k.
- 但如果是询问,那么没有执行的 ( m − i ) (m-i) (m−i) 次操作的贡献要减掉.
接下来很显然了,我们维护序列 add , del \textit{add},\textit{del} add,del,初始时 add = a \textit{add}=a add=a, del \textit{del} del 为全 0 0 0.
- 对于修改,我们给 add l ∼ add r \textit{add}_l\sim\textit{add}_r addl∼addr 加上 k × ( m − i ) k\times(m-i) k×(m−i),给 del l ∼ del r \textit{del}_l\sim\textit{del}_r dell∼delr 加上 k k k.
- 对于查询,答案就是 ( ∑ j = l r a d d j ) − ( m − i ) × ( ∑ j = l r d e l j ) (\sum\limits_{j=l}^r add_j)-(m-i)\times(\sum\limits_{j=l}^r del_j) (j=l∑raddj)−(m−i)×(j=l∑rdelj).
add , del \textit{add},\textit{del} add,del 可用线段树维护,但是时限很紧,需要用 BIT
维护,实现见代码.
Code
1.6 KB , 0.16 s , 3.6 MB (in total, C++20 with O3 ) 1.6\text{KB},0.16\text{s},3.6\text{MB}\;\texttt{(in total, C++20 with \textcolor{red}{O3})} 1.6KB,0.16s,3.6MB(in total, C++20 with O3)
#include <bits/stdc++.h>
using namespace std;using i64 = long long;
using ui64 = unsigned long long;
using i128 = __int128;
using ui128 = unsigned __int128;
using f4 = float;
using f8 = double;
using f16 = long double;template<class T>
bool chmax(T &a, const T &b){if(a < b){ a = b; return true; }return false;
}template<class T>
bool chmin(T &a, const T &b){if(a > b){ a = b; return true; }return false;
}inline int lowbit(int x) { return x & (-x); }struct bit {int n;vector<i64> c1, c2;inline bit() {}inline bit(int _n): n(_n) {c1.resize(n);c2.resize(n);}inline void add(int x, i64 k) {for (int i = x + 1; i <= n; i += lowbit(i)) {c1[i - 1] += k;c2[i - 1] += k * x;}}inline i64 ask(int x) {i64 res = 0;for (int i = x + 1; i; i -= lowbit(i)) {res += c1[i - 1] * (x + 1) - c2[i - 1];}return res;}inline void update(int l, int r, i64 v) {add(l, v);add(r + 1, -v);}inline i64 sum(int l, int r) {return ask(r) - ask(l - 1);}
};signed main() {ios::sync_with_stdio(0);cin.tie(0), cout.tie(0);int n; scanf("%d", &n);bit f1(n), f2(n);for (int i = 0, x; i < n; i++) f1.update(i, i, (scanf("%d", &x), x));int m; scanf("%d", &m);for (int i = 0, op, l, r, x; i < m; i++) {scanf("%d %d %d", &op, &l, &r), l--, r--;if (op == 1) {scanf("%d", &x);f1.update(l, r, 1LL * x * (m - i - 1));f2.update(l, r, x);}else {printf("%lld\n", f1.sum(l, r) - f2.sum(l, r) * (m - i - 1));}}return 0;
}