当前位置: 首页 > news >正文

KDD 2025 | (8月轮)时空数据(Spatial-temporal)论文总结

KDD 2025将在2025年8月3号到7号在加拿大多伦多举行,本文总结了KDD 2025(August Cycle)有关时空数据(Spatial-Temporal)相关文章,共计17篇,其中1-12为Research Track,13-17为ADS Track。

时空数据Topic:时空预测,轨迹表示学习,轨迹生成,轨迹模拟,信控优化等。如有疏漏,欢迎补充!


🌟【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅在这里插入图片描述

Research Track

1 Dynamic Localisation of Spatial-Temporal Graph Neural Network

链接https://dl.acm.org/doi/10.1145/3690624.3709331

作者:Wenying Duan, Shujun Guo, Zimu Zhou, Wei Huang, Hong Rao, Xiaoxi He

关键词:动态时空图神经网络

DynAGS

2 Efficient Large-Scale Traffic Forecasting with Transformers: A Spatial Data Management Perspective

链接https://dl.acm.org/doi/10.1145/3690624.3709177

代码https://github.com/LMissher/PatchSTG

作者:Yuchen Fang, Yuxuan Liang, Bo Hui, Zezhi Shao, Liwei Deng, Xu Liu, Xinke Jiang, Kai Zheng

关键词:交通预测,空间管理

PatchSTG

3 AutoSTF: Decoupled Neural Architecture Search for Cost-Effective Automated Spatio-Temporal Forecasting

链接https://dl.acm.org/doi/10.1145/3690624.3709323

代码https://github.com/usail-hkust/AutoSTF

作者: Tengfei Lyu, Weijia Zhang, Jinliang Deng, Hao Liu

关键词:神经架构搜索,交通预测

AutoSTF

4 Conservation-informed Graph Learning for Spatiotemporal Dynamics Prediction

链接https://dl.acm.org/doi/10.1145/3690624.3709244

作者:Yuan Mi, Pu Ren, Hongteng Xu, Hongsheng Liu, Zidong Wang, Yike Guo, Ji-Rong Wen, Hao Sun, Yang Liu

关键词:时空预测,AI4Science

5 Spatially Compact Dense Block Mining in Spatial Tensors

链接https://dl.acm.org/doi/10.1145/3690624.3709221

作者:Weike Tang, Dingming Wu, Tsz Nam Chan, Kezhong Lu

关键词:空间张量

6 ProST: Prompt Future Snapshot on Dynamic Graphs for Spatio-Temporal Prediction

链接https://dl.acm.org/doi/10.1145/3690624.3709273

作者:Kaiwen Xia, Li Lin, Shuai Wang, Qi Zhang, Shuai Wang, Tian He

关键词:稳健交通预测,动态图

7 Seeing the Unseen: Learning Basis Confounder Representations for Robust Traffic Prediction

链接https://dl.acm.org/doi/10.1145/3690624.3709201

代码https://github.com/bigscity/STEVE_CODE

作者:Jiahao Ji, Wentao Zhang, Jingyuan Wang, Chao Huang

STEVE

8 Grid and Road Expressions Are Complementary for Trajectory Representation Learning

链接https://dl.acm.org/doi/10.1145/3690624.3709272

代码https://github.com/slzhou-xy/GREEN

作者:Silin Zhou, Shuo Shang, Lisi Chen, Peng Han, Christian S. Jensen

Green

9 Revisiting Synthetic Human Trajectories: Imitative Generation and Benchmarks Beyond Datasaurus

链接https://dl.acm.org/doi/10.1145/3690624.3709180

作者:Bangchao Deng, Xin Jing, Tianyue Yang, Bingqing Qu, Dingqi Yang, Philippe Cudré-Mauroux

关键词:人类轨迹数据(生成),移动模式,评测

10 A Universal Model for Human Mobility Prediction

作者:Qingyue Long, Yuan Yuan, Yong Li

链接https://dl.acm.org/doi/10.1145/3690624.3709236

关键词:人群活动预测,流量预测,统一建模

UniMob

11 CausalMob: Causal Human Mobility Prediction with LLMs-derived Human Intentions toward Public Events

作者:Xiaojie Yang, Hangli Ge, Jiawei Wang, Zipei Fan, Renhe Jiang, Ryosuke Shibasaki, Noboru Koshizuka

链接https://dl.acm.org/doi/10.1145/3690624.3709236

关键词:人群活动预测,因果分析

CausalMob

12 CoopRide: Cooperate All Grids in City-Scale Ride-Hailing Dispatching with Multi-Agent Reinforcement Learning

链接https://dl.acm.org/doi/10.1145/3690624.3709205

代码 https://github.com/tsinghua-fib-lab/CoopRide

作者: Jingwei Wang, Qianyue Hao, Wenzhen Huang, Xiaochen Fan, Qin Zhang, Zhentao Tang, Bin Wang, Jianye Hao, Yong Li

关键词:网约车调度,多智能体强化学习

CoopRide

13 MM-Path: Multi-modal, Multi-granularity Path Representation Learning

链接https://dl.acm.org/doi/10.1145/3690624.3709209

代码 https://github.com/decisionintelligence/MM-Path

作者: Ronghui Xu, Hanyin Cheng, Chenjuan Guo, Hongfan Gao, Jilin Hu, Sean Bin Yang, Bin Yang

关键词:路径表征学习, 多模态, 自监督学习

MM-Pat

ADS Track

14 LDMapNet-U: An End-to-End System for City-Scale Lane-Level Map Updating

链接https://dl.acm.org/doi/10.1145/3690624.3709383

作者:Deguo Xia, Weiming Zhang, Xiyan Liu, Wei Zhang, Chenting Gong, Xiao Tan, Jizhou Huang, Mengmeng Yang, Diange Yang

关键词:车道级地图更新

LDMapNet-U

15 DynST: Dynamic Sparse Training for Resource-Constrained Spatio-Temporal Forecasting

链接https://dl.acm.org/doi/10.1145/3690624.3709391

作者:Hao Wu, Haomin Wen, Guibin Zhang, Yutong Xia, Yuxuan Liang, Yu Zheng, Qingsong Wen, Kun Wang

关键词:稀疏性,资源受限的时空预测

DynST

16 Large-scale Human Mobility Data Regeneration for Open Urban Research.

链接https://dl.acm.org/doi/10.1145/3690624.3709380

代码https://github.com/Rising0321/FinalOpenUR.

作者: Ruixing Zhang, Yunqi Liu, Liangzhe Han, Leilei Sun, Chuanren Liu, Jibin Wang, Weifeng Lv

关键词:人群移动模式

17 LLMLight: Large Language Models as Traffic Signal Control Agents

链接https://dl.acm.org/doi/10.1145/3690624.3709379

代码https://github.com/usail-hkust/LLMTSCS

作者:Siqi Lai, Zhao Xu, Weijia Zhang, Hao Liu, Hui Xiong

关键词:信控优化,大模型

LLMLight

18 FuzzyLight: A Robust Two-Stage Fuzzy Approach for Traffic Signal Control Works in Real Cities

链接https://dl.acm.org/doi/10.1145/3690624.3709393

代码https://dl.acm.org/doi/10.1145/3690624.3709393

作者:Mingyuan Li, Jiahao Wang, Bo Du, Jun Shen, Qiang Wu

关键词:信控优化

FuzzyLight

相关文章:

  • 【计算机视觉】语义分割:Mask2Former:统一分割框架的技术突破与实战指南
  • 第十一届蓝桥杯 2020 C/C++组 既约分数
  • 「Mac畅玩AIGC与多模态11」开发篇07 - 使用自定义名言插件开发智能体应用
  • 《Java高级编程:从原理到实战 - 进阶知识篇二》
  • spring源码学习之一-----spring依赖包作用分析
  • 【Machine Learning Q and AI 读书笔记】- 04 彩票假设
  • 单片机-89C51部分:12 pwm 呼吸灯 直流电机
  • 【Shell 脚本编程】详细指南:第一章 - 基础入门与最佳实践
  • 类比分析AI Agent 技术
  • Python实现简易博客系统
  • Linux 第六讲 --- 工具篇(一)yum/apt与vim
  • 一个linux系统电脑,一个windows电脑,怎么实现某一个文件夹共享
  • 部署企业网站内部导航 Team-Nav 2.0
  • MCAL学习(1)——AutoSAR
  • OpenGL-ES 学习(12) ---- GPU 系统结构
  • RAG工程-基于LangChain 实现 Advanced RAG(预检索-查询优化)(上)
  • 类和对象(拷贝构造和运算符重载)下
  • 脑机接口技术:开启人类与机器的全新交互时代
  • jupyter notebook汉化教程
  • 【RocketMQ 生产者消费者】- 同步、异步、单向发送消费消息
  • 魔都眼|咖啡节上小孩儿忍不住尝了咖啡香,母亲乐了
  • 天启年间故宫“三殿”重修与晚明财政
  • “五一”假期首日迎出游高峰:火车站人流“堪比春运”,热门景区门票预订量同比增三成
  • 李在明回应韩国大法院判决:与自己所想截然不同,将顺从民意
  • 陈颖已任上海黄浦区委常委、统战部部长
  • 铁路上海站迎五一假期客流最高峰,今日预计发送77万人次