39.RocketMQ高性能核心原理与源码架构剖析
1. 源码环境搭建
1.1 主要功能模块
RocketMQ的官方Git仓库地址:GitHub - apache/rocketmq: Apache RocketMQ is a cloud native messaging and streaming platform, making it simple to build event-driven applications.
RocketMQ的官方网站上下载指定版本的源码: http://rocketmq.apache.org/dowloading/releases/
源码下很多的功能模块,很容易让人迷失方向,我们只关注下几个最为重要的模块:
-
broker: Broker 模块(broke 启动进程)
-
client :消息客户端,包含消息生产者、消息消费者相关类
-
example: RocketMQ 例代码
-
namesrv:NameServer模块
-
store:消息存储模块
-
remoting:远程访问模块
1.2 源码启动服务
将源码导入IDEA后,需要先对源码进行编译。编译指令 clean install -Dmaven.test.skip=true
编译完成后就可以开始调试代码了。调试时需要按照以下步骤:
调试时,先在项目目录下创建一个conf目录,并从distribution
拷贝broker.conf
和logback_broker.xml
和logback_namesrv.xml
2.1 启动nameServer
展开namesrv模块,运行NamesrvStartup类即可启动NameServer
启动时,会报错,提示需要配置一个ROCKETMQ_HOME环境变量。这个环境变量我们可以在机器上配置,跟配置JAVA_HOME环境变量一样。也可以在IDEA的运行环境中配置。目录指向源码目录即可。
配置完成后,再次执行,看到以下日志内容,表示NameServer启动成功
The Name Server boot success. serializeType=JSON
2.2 启动Broker
启动Broker之前,我们需要先修改之前复制的broker.conf文件
brokerClusterName = DefaultCluster
brokerName = broker-a
brokerId = 0
deleteWhen = 04
fileReservedTime = 48
brokerRole = ASYNC_MASTER
flushDiskType = ASYNC_FLUSH# 自动创建Topic
autoCreateTopicEnable=true
# nameServ地址
namesrvAddr=127.0.0.1:9876
# 存储路径
storePathRootDir=D:\\RocketMQ\\data\\rocketmq\\dataDir
# commitLog路径
storePathCommitLog=D:\\RocketMQ\\data\\rocketmq\\dataDir\\commitlog
# 消息队列存储路径
storePathConsumeQueue=D:\\RocketMQ\\data\\rocketmq\\dataDir\\consumequeue
# 消息索引存储路径
storePathIndex=D:\\RocketMQ\\data\\rocketmq\\dataDir\\index
# checkpoint文件路径
storeCheckpoint=D:\\RocketMQ\\data\\rocketmq\\dataDir\\checkpoint
# abort文件存储路径
abortFile=D:\\RocketMQ\\data\\rocketmq\\dataDir\\abort
然后Broker的启动类是broker模块下的BrokerStartup。
启动Broker时,同样需要ROCETMQ_HOME环境变量,并且还需要配置一个-c 参数,指向broker.conf配置文件。
然后重新启动,即可启动Broker。
2.3 发送消息
在源码的example模块下,提供了非常详细的测试代码。例如我们启动example模块下的org.apache.rocketmq.example.quickstart.Producer类即可发送消息。
但是在测试源码中,需要指定NameServer地址。这个NameServer地址有两种指定方式,一种是配置一个NAMESRV_ADDR的环境变量。另一种是在源码中指定。我们可以在源码中加一行代码指定NameServer
producer.setNamesrvAddr("127.0.0.1:9876");
然后就可以发送消息了。
2.4 消费消息
我们可以使用同一模块下的org.apache.rocketmq.example.quickstart.Consumer类来消费消息。运行时同样需要指定NameServer地址
consumer.setNamesrvAddr("192.168.232.128:9876");
这样整个调试环境就搭建好了。
1.3 读源码的方法
1、带着问题读源码。如果没有自己的思考,源码不如不读!!!
2、小步快走。不要觉得一两遍就能读懂源码。这里我会分为三个阶段来带你逐步加深对源码的理解。
3、分步总结。带上自己的理解,及时总结。对各种扩展功能,尝试验证。对于RocketMQ,试着去理解源码中的各种单元测试。
2. 源码概识阶段
梳理一些重要的服务端核心配置,找到一点点读源码的感觉。
2.1 NameServer的启动过程
1、关注重点
在RocketMQ集群中,消息存储、推送等核心功能点额是Broker。而NameServer的作用,其实和微服务中的注册中心非常类似,他只是提供了Broker端的服务注册与发现功能。
第一次看源码,不要太过陷入具体的细节,先搞清楚NameServer的大体结构。
2、源码重点
NameServer的启动入口类是org.apache.rocketmq.namesrv.NamesrvStartup。其中的核心是构建并启动一个NamesrvController。这个Cotroller对象就跟MVC中的Controller是很类似的,都是响应客户端的请求。只不过,他响应的是基于Netty的客户端请求。
另外,他的实际启动过程,其实可以配合NameServer的启动脚本进行更深入的理解。
从NameServer启动和关闭这两个关键步骤,我们可以总结出NameServer的组件其实并不是很多,整个NameServer的结构是这样的;
这两个配置类就可以用来指导如何优化Nameserver的配置。比如,如何调整nameserver的端口?自己试试从源码中找找答案。
从这里也能看出, RocketMQ的整体源码风格就是典型的MVC思想。Controller响应请求,Service处理业务,各种Table保存消息。
2.2 Broker服务启动过程
1、关注重点
Broker是整个RocketMQ的业务核心。所有消息存储、转发这些重要的业务都是Broker进行处理。
这里重点梳理Broker有哪些内部服务。这些内部服务将是整理Broker核心业务流程的起点。
2、源码重点
Broker启动的入口在BrokerStartup这个类,可以从他的main方法开始调试。
启动过程关键点:重点也是围绕一个BrokerController对象,先创建,然后再启动。
首先: 在BrokerStartup.createBrokerController方法中可以看到Broker的几个核心配置:
-
BrokerConfig : Broker服务配置
-
MessageStoreConfig : 消息存储配置。 这两个配置参数都可以在broker.conf文件中进行配置
-
NettyServerConfig :Netty服务端占用了10911端口。同样也可以在配置文件中覆盖。
-
NettyClientConfig : Broker既要作为Netty服务端,向客户端提供核心业务能力,又要作为Netty客户端,向NameServer注册心跳。
这些配置是我们了解如何优化 RocketMQ 使用的关键。
然后: 在BrokerController.start方法可以看到启动了一大堆Broker的核心服务,我们挑一些重要的
this.messageStore.start();//启动核心的消息存储组件this.remotingServer.start();
this.fastRemotingServer.start(); //启动两个Netty服务this.brokerOuterAPI.start();//启动客户端,往外发请求BrokerController.this.registerBrokerAll: //向NameServer注册心跳。this.brokerStatsManager.start();
this.brokerFastFailure.start();//这也是一些负责具体业务的功能组件
我们现在不需要了解这些核心组件的具体功能,只要有个大概,Broker中有一大堆的功能组件负责具体的业务。后面等到分析具体业务时再去深入每个服务的细节。
我们需要抽象出Broker的一个整体结构:
可以看到Broker启动了两个Netty服务,他们的功能基本差不多。实际上,在应用中,可以通过producer.setSendMessageWithVIPChannel(true),让少量比较重要的producer走VIP的通道。而在消费者端,也可以通过consumer.setVipChannelEnabled(true),让消费者支持VIP通道的数据。
3. 源码入门阶段
开始理解一些比较简单的业务逻辑
3.1 Netty服务注册框架
1、关注重点
网络通信服务是构建分布式应用的基础,也是我们去理解RocketMQ底层业务的基础。这里就重点梳理RocketMQ的这个服务注册框架,理解各个业务进程之间是如何进行RPC远程通信的。
Netty的所有远程通信功能都由remoting模块实现。RemotingServer模块里包含了RPC的服务端RemotingServer以及客户端RemotingClient。在RocketMQ中,涉及到的远程服务非常多,在RocketMQ中,NameServer主要是RPC的服务端RemotingServer,Broker对于客户端来说,是RPC的服务端RemotingServer,而对于NameServer来说,又是RPC的客户端。各种Client是RPC的客户端RemotingClient。
需要理解的是,RocketMQ基于Netty保持客户端与服务端的长连接Channel。只要Channel是稳定的,那么即可以从客户端发请求到服务端,同样服务端也可以发请求到客户端。例如在事务消息场景中,就需要Broker多次主动向Producer发送请求确认事务的状态。所以,RemotingServer和RemotingClient都需要注册自己的服务。
2、源码重点
1、哪些组件需要Netty服务端?哪些组件需要Netty客户端? 比较好理解的,NameServer需要NettyServer。客户端,Producer和Consuer,需要NettyClient。Broker需要NettyServer响应客户端请求,需要NettyClient向NameServer注册心跳。但是有个问题, 事务消息的Producer也需要响应Broker的事务状态回查,他需要NettyServer吗?
NameServer不需要NettyClient,这也验证了之前介绍的NameServer之间不需要进行数据同步的说法。
2、所有的RPC请求数据都封装成RemotingCommand对象。而每个处理消息的服务逻辑,都会封装成一个NettyRequestProcessor对象。
3、服务端和客户端都维护一个processorTable,这是个HashMap。key是服务码requestCode,value是对应的运行单元 Pair<NettyRequestProcessor,ExecutorService>类型,包含了处理Processor和执行线程的线程池。具体的Processor,由业务系统自行注册。
Broker服务注册见,BrokerController.registerProcessor(),
客户端的服务注册见MQClientAPIImpl。
NameServer则会注册一个大的DefaultRequestProcessor,统一处理所有服务。
4、请求类型分为REQUEST和RESPONSE。这是为了支持异步的RPC调用。NettyServer处理完请求后,可以先缓存到responseTable中,等NettyClient下次来获取,这样就不用阻塞Channel了,可以提升请求吞吐量。猜一猜Producer的同步请求的流程是什么样的?
5、重点理解remoting包中是如何实现全流程异步化。
整体RPC框架流程如下图:
RocketMQ使用Netty框架提供了一套基于服务码的服务注册机制,让各种不同的组件都可以按照自己的需求,注册自己的服务方法。RocketMQ的这一套服务注册机制,是非常简洁使用的。在使用Netty进行其他相关应用开发时,都可以借鉴他的这一套服务注册机制。例如要开发一个大型的IM项目,要加减好友、发送文本,图片,甚至红包、维护群聊信息等等各种各样的请求,这些请求如何封装,就可以很好的参考这个框架。
3、关于RocketMQ的同步结果推送与异步结果推送
RocketMQ的RemotingServer服务端,会维护一个responseTable,这是一个线程同步的Map结构。 key为请求的ID,value是异步的消息结果。ConcurrentMap<Integer /* opaque */, ResponseFuture> 。
处理同步请求(NettyRemotingAbstract#invokeSyncImpl)时,处理的结果会存入responseTable,通过ResponseFuture提供一定的服务端异步处理支持,提升服务端的吞吐量。 请求返回后,立即从responseTable中移除请求记录。
实际上,同步也是通过异步实现的。
//org.apache.rocketmq.remoting.netty.ResponseFuture//发送消息后,通过countDownLatch阻塞当前线程,造成同步等待的效果。public RemotingCommand waitResponse(final long timeoutMillis) throws InterruptedException {this.countDownLatch.await(timeoutMillis, TimeUnit.MILLISECONDS);return this.responseCommand;}//等待异步获取到消息后,再通过countDownLatch释放当前线程。public void putResponse(final RemotingCommand responseCommand) {this.responseCommand = responseCommand;this.countDownLatch.countDown();}
处理异步请求(NettyRemotingAbstract#invokeAsyncImpl)时,处理的结果依然会存入responsTable,等待客户端后续再来请求结果。但是他保存的依然是一个ResponseFuture,也就是在客户端请求结果时再去获取真正的结果。 另外,在RemotingServer启动时,会启动一个定时的线程任务,不断扫描responseTable,将其中过期的response清除掉。
//org.apache.rocketmq.remoting.netty.NettyRemotingServer
this.timer.scheduleAtFixedRate(new TimerTask() {@Overridepublic void run() {try {NettyRemotingServer.this.scanResponseTable();} catch (Throwable e) {log.error("scanResponseTable exception", e);}}}, 1000 * 3, 1000);
3.2 Broker心跳注册管理
1、关注重点
之前介绍过,Broker会在启动时向所有NameServer注册自己的服务信息,并且会定时往NameServer发送心跳信息。而NameServer会维护Broker的路由列表,并对路由表进行实时更新。这一轮就重点梳理这个过程。
2、源码重点
Broker启动后会立即发起向NameServer注册心跳。方法入口:BrokerController.this.registerBrokerAll。 然后启动一个定时任务,以10秒延迟,默认30秒的间隔持续向NameServer发送心跳。
NameServer内部会通过RouteInfoManager组件及时维护Broker信息。同时在NameServer启动时,会启动定时任务,扫描不活动的Broker。方法入口:NamesrvController.initialize方法。
3、极简化的服务注册发现流程
为什么RocketMQ要自己实现一个NameServer,而不用Zookeeper、Nacos这样现成的注册中心?
首先,依赖外部组件会对产品的独立性形成侵入,不利于自己的版本演进。Kafka要抛弃Zookeeper就是一个先例。
另外,其实更重要的还是对业务的合理设计。NameServer之间不进行信息同步,而是依赖Broker端向所有NameServer同时发起注册。这让NameServer的服务可以非常轻量。如果可能,你可以与Nacos或Zookeeper的核心流程做下对比。
但是,要知道,这种极简的设计,其实是以牺牲数据一致性为代价的。Broker往多个NameServer同时发起注册,有可能部分NameServer注册成功,而部分NameServer注册失败了。这样,多个NameServer之间的数据是不一致的。作为注册中心,这是不可接受的。但是对于RocketMQ,这又变得可以接受了。因为客户端从NameServer上获得的,只要有一个正常运行的Broker就可以了,并不需要完整的Broker列表。
3.3 Producer发送消息过程
1、关注重点
首先:回顾下我们之前的Producer使用案例。
Producer有两种:
-
一种是普通发送者:DefaultMQProducer。只负责发送消息,发送完消息,就可以停止了。
-
另一种是事务消息发送者: TransactionMQProducer。支持事务消息机制。需要在事务消息过程中提供事务状态确认的服务,这就要求事务消息发送者虽然是一个客户端,但是也要完成整个事务消息的确认机制后才能退出。
事务消息机制后面将结合Broker进行整理分析。这一步暂不关注。我们只关注DefaultMQProducer的消息发送过程。
然后:整个Producer的使用流程,大致分为两个步骤:
一是调用start方法,进行一大堆的准备工作。
二是各种send方法,进行消息发送。
那我们重点关注以下几个问题:
1、Producer启动过程中启动了哪些服务
2、Producer如何管理broker路由信息。 可以设想一下,如果Producer启动了之后,NameServer挂了,那么Producer还能不能发送消息?希望你先从源码中进行猜想,然后自己设计实验进行验证。
3、关于Producer的负载均衡。也就是Producer到底将消息发到哪个MessageQueue中。这里可以结合顺序消息机制来理解一下。消息中那个莫名奇妙的MessageSelector到底是如何工作的。
2、源码重点
1、Producer的核心启动流程
所有Producer的启动过程,最终都会调用到DefaultMQProducerImpl#start方法。在start方法中的通过一个mQClientFactory对象,启动生产者的一大堆重要服务。
这里其实就是一种设计模式,虽然有很多种不同的客户端,但是这些客户端的启动流程最终都是统一的,全是交由mQClientFactory对象来启动。而不同之处在于这些客户端在启动过程中,按照服务端的要求注册不同的信息。例如生产者注册到producerTable,消费者注册到consumerTable,管理控制端注册到adminExtTable
2、发送消息的核心流程
核心流程如下:
1、发送消息时,会维护一个本地的topicPublishInfoTable缓存,DefaultMQProducer会尽量保证这个缓存数据是最新的。但是,如果NameServer挂了,那么DefaultMQProducer还是会基于这个本地缓存去找Broker。只要能找到Broker,还是可以正常发送消息到Broker的。 --可以在生产者示例中,start后打一个断点,然后把NameServer停掉,这时,Producer还是可以发送消息的。
2、生产者如何找MessageQueue: 默认情况下,生产者是按照轮询的方式,依次轮询各个MessageQueue。但是如果某一次往一个Broker发送请求失败后,下一次就会跳过这个Broker。
//org.apache.rocketmq.client.impl.producer.TopicPublishInfo//如果进到这里lastBrokerName不为空,那么表示上一次向这个Broker发送消息是失败的,这时就尽量不要再往这个Broker发送消息了。public MessageQueue selectOneMessageQueue(final String lastBrokerName) {if (lastBrokerName == null) {return selectOneMessageQueue();} else {for (int i = 0; i < this.messageQueueList.size(); i++) {int index = this.sendWhichQueue.incrementAndGet();int pos = Math.abs(index) % this.messageQueueList.size();if (pos < 0)pos = 0;MessageQueue mq = this.messageQueueList.get(pos);if (!mq.getBrokerName().equals(lastBrokerName)) {return mq;}}return selectOneMessageQueue();}}
3、如果在发送消息时传了Selector,那么Producer就不会走这个负载均衡的逻辑,而是会使用Selector去寻找一个队列。 具体参见org.apache.rocketmq.client.impl.producer.DefaultMQProducerImpl#sendSelectImpl 方法。
3.4 Consumer拉取消息过程
1、关注重点
-
消费者也是有两种,推模式消费者和拉模式消费者。优秀的MQ产品都会有一个高级的目标,就是要提升整个消息处理的性能。而要提升性能,服务端的优化手段往往不够直接,最为直接的优化手段就是对消费者进行优化。所以在RocketMQ中,整个消费者的业务逻辑是非常复杂的,甚至某种程度上来说,比服务端更复杂,所以,在这里我们重点关注用得最多的推模式的消费者。
-
消费者组之间有集群模式和广播模式两种消费模式。我们就要了解下这两种集群模式是如何做的逻辑封装。
-
然后我们关注下消费者端的负载均衡的原理。即消费者是如何绑定消费队列的,哪些消费策略到底是如何落地的。
-
最后我们来关注下在推模式的消费者中,MessageListenerConcurrently 和MessageListenerOrderly这两种消息监听器的处理逻辑到底有什么不同,为什么后者能保持消息顺序。
2、源码重点
Consumer的核心启动过程和Producer是一样的, 最终都是通过mQClientFactory对象启动。不过之间添加了一些注册信息。整体的启动过程如下:
3、广播模式与集群模式的Offset处理
在DefaultMQPushConsumerImpl的start方法中,启动了非常多的核心服务。 比如,对于广播模式与集群模式的Offset处理
if (this.defaultMQPushConsumer.getOffsetStore() != null) {this.offsetStore = this.defaultMQPushConsumer.getOffsetStore();} else {switch (this.defaultMQPushConsumer.getMessageModel()) {case BROADCASTING:this.offsetStore = new LocalFileOffsetStore(this.mQClientFactory, this.defaultMQPushConsumer.getConsumerGroup());break;case CLUSTERING:this.offsetStore = new RemoteBrokerOffsetStore(this.mQClientFactory, this.defaultMQPushConsumer.getConsumerGroup());break;default:break;}this.defaultMQPushConsumer.setOffsetStore(this.offsetStore);}this.offsetStore.load();
可以看到,广播模式是使用LocalFileOffsetStore,在Consumer本地保存Offset,而集群模式是使用RemoteBrokerOffsetStore,在Broker端远程保存offset。而这两种Offset的存储方式,最终都是通过维护本地的offsetTable缓存来管理Offset。
4、Consumer与MessageQueue建立绑定关系
start方法中还一个比较重要的东西是给rebalanceImpl设定了一个AllocateMessageQueueStrategy,用来给Consumer分配MessageQueue的。
this.rebalanceImpl.setMessageModel(this.defaultMQPushConsumer.getMessageModel());
//Consumer负载均衡策略
this.rebalanceImpl.setAllocateMessageQueueStrategy(this.defaultMQPushConsumer.getAllocateMessageQueueStrategy());
这个AllocateMessageQueueStrategy就是用来给Consumer和MessageQueue之间建立一种对应关系的。也就是说,只要Topic当中的MessageQueue以及同一个ConsumerGroup中的Consumer实例都没有变动,那么某一个Consumer实例只是消费固定的一个或多个MessageQueue上的消息,其他Consumer不会来抢这个Consumer对应的MessageQueue。
关于负载均衡机制,会在后面结合Producer的发送消息策略一起总结。不过这里,你可以想一下为什么要让一个MessageQueue只能由同一个ConsumerGroup中的一个Consumer实例来消费。
其实原因很简单,因为Broker需要按照ConsumerGroup管理每个MessageQueue上的Offset,如果一个MessageQueue上有多个同属一个ConsumerGroup的Consumer实例,他们的处理进度就会不一样。这样的话,Offset就乱套了。
5、顺序消费与并发消费
同样在start方法中,启动了consumerMessageService线程,进行消息拉取。
//Consumer中自行指定的回调函数。if (this.getMessageListenerInner() instanceof MessageListenerOrderly) {this.consumeOrderly = true;this.consumeMessageService =new ConsumeMessageOrderlyService(this, (MessageListenerOrderly) this.getMessageListenerInner());} else if (this.getMessageListenerInner() instanceof MessageListenerConcurrently) {this.consumeOrderly = false;this.consumeMessageService =new ConsumeMessageConcurrentlyService(this, (MessageListenerConcurrently) this.getMessageListenerInner());}
可以看到, Consumer通过registerMessageListener方法指定的回调函数,都被封装成了ConsumerMessageService的子实现类。
而对于这两个服务实现类的调用,会延续到DefaultMQPushConsumerImpl的pullCallback对象中。也就是Consumer每拉过来一批消息后,就向Broker提交下一个拉取消息的的请求。
这里也可以印证一个点,就是顺序消息,只对异步消费也就是推模式有效。同步消费的拉模式是无法进行顺序消费的。因为这个pullCallback对象,在拉模式的同步消费时,根本就没有往下传。
当然,这并不是说拉模式不能锁定队列进行顺序消费,拉模式在Consumer端应用就可以指定从哪个队列上拿消息。
PullCallback pullCallback = new PullCallback() {@Overridepublic void onSuccess(PullResult pullResult) {if (pullResult != null) {//...switch (pullResult.getPullStatus()) {case FOUND://...DefaultMQPushConsumerImpl.this.consumeMessageService.submitConsumeRequest(pullResult.getMsgFoundList(),processQueue,pullRequest.getMessageQueue(),dispatchToConsume);//... break;//...}}}
而这里提交的,实际上是一个ConsumeRequest线程。而提交的这个ConsumeRequest线程,在两个不同的ConsumerService中有不同的实现。
这其中,两者最为核心的区别在于ConsumerMessageOrderlyService是锁定了一个队列,处理完了之后,再消费下一个队列。
public void run() {// ....final Object objLock = messageQueueLock.fetchLockObject(this.messageQueue);synchronized (objLock) {//....}}
为什么给队列加个锁,就能保证顺序消费呢?结合顺序消息的实现机制理解一下。
从源码中可以看到,Consumer提交请求时,都是往线程池里异步提交的请求。如果不加队列锁,那么就算Consumer提交针对同一个MessageQueue的拉取消息请求,这些请求都是异步执行,他们的返回顺序是乱的,无法进行控制。给队列加个锁之后,就保证了针对同一个队列的第二个请求,必须等第一个请求处理完了之后,释放了锁,才可以提交。这也是在异步情况下保证顺序的基础思路。
6、实际拉取消息还是通过PullMessageService完成的。
start方法中,相当于对很多消费者的服务进行初始化,包括指定一些服务的实现类,以及启动一些定时的任务线程,比如清理过期的请求缓存等。最后,会随着mQClientFactory组件的启动,启动一个PullMessageService。实际的消息拉取都交由PullMesasgeService进行。
所谓消息推模式,其实还是通过Consumer拉消息实现的。
//org.apache.rocketmq.client.impl.consumer.PullMessageServiceprivate void pullMessage(final PullRequest pullRequest) {final MQConsumerInner consumer = this.mQClientFactory.selectConsumer(pullRequest.getConsumerGroup());if (consumer != null) {DefaultMQPushConsumerImpl impl = (DefaultMQPushConsumerImpl) consumer;impl.pullMessage(pullRequest);} else {log.warn("No matched consumer for the PullRequest {}, drop it", pullRequest);}}
4. 客户端负载均衡管理总结
从之前Producer发送消息的过程以及Conmer拉取消息的过程,我们可以抽象出RocketMQ中一个消息分配的管理模型。这个模型是我们在使用RocketMQ时,很重要的进行性能优化的依据。
1 Producer负载均衡
Producer发送消息时,默认会轮询目标Topic下的所有MessageQueue,并采用递增取模的方式往不同的MessageQueue上发送消息,以达到让消息平均落在不同的queue上的目的。而由于MessageQueue是分布在不同的Broker上的,所以消息也会发送到不同的broker上。
在之前源码中看到过,Producer轮询时,如果发现往某一个Broker上发送消息失败了,那么下一次会尽量避免再往同一个Broker上发送消息。但是,如果你的应用场景允许发送消息长延迟,也可以给Producer设定setSendLatencyFaultEnable(true)。这样对于某些Broker集群的网络不是很好的环境,可以提高消息发送成功的几率。
同时生产者在发送消息时,可以指定一个MessageQueueSelector。通过这个对象来将消息发送到自己指定的MessageQueue上。这样可以保证消息局部有序。
2 Consumer负载均衡
Consumer也是以MessageQueue为单位来进行负载均衡。分为集群模式和广播模式。
1、集群模式
在集群消费模式下,每条消息只需要投递到订阅这个topic的Consumer Group下的一个实例即可。RocketMQ采用主动拉取的方式拉取并消费消息,在拉取的时候需要明确指定拉取哪一条message queue。
而每当实例的数量有变更,都会触发一次所有实例的负载均衡,这时候会按照queue的数量和实例的数量平均分配queue给每个实例。
每次分配时,都会将MessageQueue和消费者ID进行排序后,再用不同的分配算法进行分配。内置的分配的算法共有六种,分别对应AllocateMessageQueueStrategy下的六种实现类,可以在consumer中直接set来指定。默认情况下使用的是最简单的平均分配策略。
-
AllocateMachineRoomNearby: 将同机房的Consumer和Broker优先分配在一起。
这个策略可以通过一个machineRoomResolver对象来定制Consumer和Broker的机房解析规则。然后还需要引入另外一个分配策略来对同机房的Broker和Consumer进行分配。一般也就用简单的平均分配策略或者轮询分配策略。
感觉这东西挺鸡肋的,直接给个属性指定机房不是挺好的吗。
源码中有测试代码AllocateMachineRoomNearByTest。
在示例中:Broker的机房指定方式: messageQueue.getBrokerName().split("-")[0],而Consumer的机房指定方式:clientID.split("-")[0]
clinetID的构建方式:见ClientConfig.buildMQClientId方法。按他的测试代码应该是要把clientIP指定为IDC1-CID-0这样的形式。
-
AllocateMessageQueueAveragely:平均分配。将所有MessageQueue平均分给每一个消费者
-
AllocateMessageQueueAveragelyByCircle: 轮询分配。轮流的给一个消费者分配一个MessageQueue。
-
AllocateMessageQueueByConfig: 不分配,直接指定一个messageQueue列表。类似于广播模式,直接指定所有队列。
-
AllocateMessageQueueByMachineRoom:按逻辑机房的概念进行分配。又是对BrokerName和ConsumerIdc有定制化的配置。
-
AllocateMessageQueueConsistentHash。源码中有测试代码AllocateMessageQueueConsitentHashTest。这个一致性哈希策略只需要指定一个虚拟节点数,是用的一个哈希环的算法,虚拟节点是为了让Hash数据在换上分布更为均匀。
最常用的就是平均分配和轮训分配了。例如平均分配时的分配情况是这样的:
而轮询分配就不计算了,每次把一个队列分给下一个Consumer实例。
2、广播模式
广播模式下,每一条消息都会投递给订阅了Topic的所有消费者实例,所以也就没有消息分配这一说。而在实现上,就是在Consumer分配Queue时,所有Consumer都分到所有的Queue。
广播模式实现的关键是将消费者的消费偏移量不再保存到broker当中,而是保存到客户端当中,由客户端自行维护自己的消费偏移量。
4. 融汇贯通阶段
开始梳理一些比较完整,比较复杂的完整业务线。
4.1 消息持久化设计
1、RocketMQ的持久化文件结构
消息持久化也就是将内存中的消息写入到本地磁盘的过程。而磁盘IO操作通常是一个很耗性能,很慢的操作,所以,对消息持久化机制的设计,是一个MQ产品提升性能的关键,甚至可以说是最为重要的核心也不为过。这部分我们就先来梳理RocketMQ是如何在本地磁盘中保存消息的。
在进入源码之前,我们首先需要看一下RocketMQ在磁盘上存了哪些文件。RocketMQ消息直接采用磁盘文件保存消息,默认路径在${user_home}/store目录。这些存储目录可以在broker.conf中自行指定。
-
存储文件主要分为三个部分:
-
CommitLog:存储消息的元数据。所有消息都会顺序存入到CommitLog文件当中。CommitLog由多个文件组成,每个文件固定大小1G。以第一条消息的偏移量为文件名。
-
ConsumerQueue:存储消息在CommitLog的索引。一个MessageQueue一个文件,记录当前MessageQueue被哪些消费者组消费到了哪一条CommitLog。
-
IndexFile:为了消息查询提供了一种通过key或时间区间来查询消息的方法,这种通过IndexFile来查找消息的方法不影响发送与消费消息的主流程
另外,还有几个辅助的存储文件,主要记录一些描述消息的元数据:
-
checkpoint:数据存盘检查点。里面主要记录commitlog文件、ConsumeQueue文件以及IndexFile文件最后一次刷盘的时间戳。
-
config/*.json:这些文件是将RocketMQ的一些关键配置信息进行存盘保存。例如Topic配置、消费者组配置、消费者组消息偏移量Offset 等等一些信息。
-
abort:这个文件是RocketMQ用来判断程序是否正常关闭的一个标识文件。正常情况下,会在启动时创建,而关闭服务时删除。但是如果遇到一些服务器宕机,或者kill -9这样一些非正常关闭服务的情况,这个abort文件就不会删除,因此RocketMQ就可以判断上一次服务是非正常关闭的,后续就会做一些数据恢复的操作。
-
整体的消息存储结构,官方做了个图进行描述:
简单来说,Producer发过来的所有消息,不管是属于那个Topic,Broker都统一存在CommitLog文件当中,然后分别构建ConsumeQueue文件和IndexFile两个索引文件,用来辅助消费者进行消息检索。这种设计最直接的好处是可以较少查找目标文件的时间,让消息以最快的速度落盘。对比Kafka存文件时,需要寻找消息所属的Partition文件,再完成写入。当Topic比较多时,这样的Partition寻址就会浪费非常多的时间。所以Kafka不太适合多Topic的场景。而RocketMQ的这种快速落盘的方式,在多Topic的场景下,优势就比较明显了。
然后在文件形式上:
CommitLog文件的大小是固定的。文件名就是当前CommitLog文件当中存储的第一条消息的Offset。
ConsumeQueue文件主要是加速消费者进行消息索引。每个文件夹对应RocketMQ中的一个MessageQueue,文件夹下的文件记录了每个MessageQueue中的消息在CommitLog文件当中的偏移量。这样,消费者通过ConsumeQueue文件,就可以快速找到CommitLog文件中感兴趣的消息记录。而消费者在ConsumeQueue文件中的消费进度,会保存在config/consumerOffset.json文件当中。
IndexFile文件主要是辅助消费者进行消息索引。消费者进行消息消费时,通过ConsumeQueue文件就足够完成消息检索了,但是如果消费者指定时间戳进行消费,或者要按照MeessageId或者MessageKey来检索文件,比如RocketMQ管理控制台的消息轨迹功能,ConsumeQueue文件就不够用了。IndexFile文件就是用来辅助这类消息检索的。他的文件名比较特殊,不是以消息偏移量命名,而是用的时间命名。但是其实,他也是一个固定大小的文件。
这是对RocketMQ存盘文件最基础的了解,但是只有这样的设计,是不足以支撑RocketMQ的三高性能的。RocketMQ如何保证ConsumeQueue、IndexFile两个索引文件与CommitLog中的消息对齐?如何保证消息断电不丢失?如何保证文件高效的写入磁盘?等等。如果你想要去抓住RocketMQ这些三高问题的核心设计,那么还是需要到源码当中去深究。
以下几个部分非常重要,所以有必要单独拉出章节来详细讲解。
2、commitLog写入
消息存储的入口在: DefaultMessageStore.asyncPutMessage方法
怎么找到这个方法的?这个大家可以自行往上溯源。其实还是可以追溯到Broker处理Producer发送消息的请求的SendMessageProcessor中。
CommitLog的asyncPutMessage方法中会给写入线程加锁,保证一次只会允许一个线程写入。写入消息的过程是串行的,一次只会允许一个线程写入。
最终进入CommitLog中的DefaultAppendMessageCallback#doAppend方法,这里就是Broker写入消息的实际入口。这个方法最终会把消息追加到MappedFile映射的一块内存里,并没有直接写入磁盘。而是在随后调用ComitLog#submitFlushRequest方法,提交刷盘申请。刷盘完成之后,内存中的文件才真正写入到磁盘当中。
在提交刷盘申请之后,就会立即调用CommitLog#submitReplicaRequest方法,发起主从同步申请。
3、文件同步刷盘与异步刷盘
入口:CommitLog.submitFlushRequest
这里涉及到了对于同步刷盘与异步刷盘的不同处理机制。这里有很多极致提高性能的设计,对于我们理解和设计高并发应用场景有非常大的借鉴意义。
同步刷盘和异步刷盘是通过不同的FlushCommitLogService的子服务实现的。
//org.apache.rocketmq.store.CommitLog的构造方法if (FlushDiskType.SYNC_FLUSH == defaultMessageStore.getMessageStoreConfig().getFlushDiskType()) {this.flushCommitLogService = new GroupCommitService();} else {this.flushCommitLogService = new FlushRealTimeService();}this.commitLogService = new CommitRealTimeService();
同步刷盘采用的是GroupCommitService子线程。虽然是叫做同步刷盘,但是从源码中能看到,他实际上并不是来一条消息就刷一次盘。而是这个子线程每10毫秒执行一次doCommit方法,扫描文件的缓存。只要缓存当中有消息,就执行一次Flush操作。
而异步刷盘采用的是FlushRealTimeService子线程。这个子线程最终也是执行Flush操作,只不过他的执行时机会根据配置进行灵活调整。所以可以看到,这里异步刷盘和同步刷盘的最本质区别,实际上是进行Flush操作的频率不同。
我们经常说使用RocketMQ的同步刷盘,可以保证Broker断电时,消息不会丢失。但是可以看到,RocketMQ并不可能真正来一条消息就进行一次刷盘,这样在海量数据下,操作系统是承受不了的。而只要不是来一次消息刷一次盘,那么在Broker直接断电的情况接下,就总是会有内存中的消息没有刷入磁盘的情况,这就会造成消息丢失。所以,对于消息安全性的设计,其实是重在取舍,无法做到绝对。
同步刷盘和异步刷盘最终落地到FileChannel的force方法。这个force方法就会最终调用一次操作系统的fsync系统调用,完成文件写入。关于force操作的详细演示,可以参考后面的零拷贝部分。
//org.apache.rocketmq.storepublic int flush(final int flushLeastPages) {if (this.isAbleToFlush(flushLeastPages)) {if (this.hold()) {int value = getReadPosition();try {//We only append data to fileChannel or mappedByteBuffer, never both.if (writeBuffer != null || this.fileChannel.position() != 0) {this.fileChannel.force(false);} else {this.mappedByteBuffer.force();}} catch (Throwable e) {log.error("Error occurred when force data to disk.", e);}this.flushedPosition.set(value);this.release();} else {log.warn("in flush, hold failed, flush offset = " + this.flushedPosition.get());this.flushedPosition.set(getReadPosition());}}return this.getFlushedPosition();}
而另外一个CommitRealTimeService这个子线程则是用来写入堆外内存的。应用可以通过配置TransientStorePoolEnable参数开启对外内存,如果开启了堆外内存,会在启动时申请一个跟CommitLog文件大小一致的堆外内存,这部分内存就可以确保不会被交换到虚拟内存中。而CommitRealTimeService处理消息的方式则只是调用mappedFileQueue的commit方法。这个方法只是往操作系统的PagedCache里写入消息,并不主动进行刷盘操作。会由操作系统通过Dirty Page机制,在某一个时刻进行统一刷盘。例如我们在正常关闭操作系统时,经常会等待很长时间。这里面大部分的时间其实就是在做PageCache的刷盘。
public boolean commit(final int commitLeastPages) {boolean result = true;MappedFile mappedFile = this.findMappedFileByOffset(this.committedWhere, this.committedWhere == 0);if (mappedFile != null) {int offset = mappedFile.commit(commitLeastPages);long where = mappedFile.getFileFromOffset() + offset;result = where == this.committedWhere;this.committedWhere = where;}return result;}
然后,在梳理同步刷盘与异步刷盘的具体实现时,可以看到一个小点,RocketMQ是如何让两个刷盘服务间隔执行的?RocketMQ提供了一个自己实现的CountDownLatch2工具类来提供线程阻塞功能,使用CAS驱动CountDownLatch2的countDown操作。每来一个消息就启动一次CAS,成功后,调用一次countDown。而这个CountDonwLatch2在Java.util.concurrent.CountDownLatch的基础上,实现了reset功能,这样可以进行对象重用。如果你对JUC并发编程感兴趣,那么这也是一个不错的学习点。
到这里,我们只是把同步刷盘和异步刷盘的机制梳理清楚了。但是关于force操作跟刷盘有什么关系?如果你对底层IO操作不是很理解,那么很容易产生困惑。没关系,保留你的疑问,下一部分我们会一起梳理。
4、CommigLog主从复制
入口:CommitLog.submitReplicaRequest
主从同步时,也体现到了RocketMQ对于性能的极致追求。最为明显的,RocketMQ整体是基于Netty实现的网络请求,而在主从复制这一块,却放弃了Netty框架,转而使用更轻量级的Java的NIO来构建。
在主要的HAService中,会在启动过程中启动三个守护进程。
//HAService#startpublic void start() throws Exception {this.acceptSocketService.beginAccept();this.acceptSocketService.start();this.groupTransferService.start();this.haClient.start();}
这其中与Master相关的是acceptSocketService和groupTransferService。其中acceptSocketService主要负责维护Master与Slave之间的TCP连接。groupTransferService主要与主从同步复制有关。而slave相关的则是haClient。
至于其中关于主从的同步复制与异步复制的实现流程,还是比较复杂的,有兴趣的同学可以深入去研究一下。
推荐一篇可供参考的博客 RocketMQ源码分析之主从数据复制_rocketmq commitlog复制-CSDN博客
5、分发ConsumeQueue和IndexFile
当CommitLog写入一条消息后,在DefaultMessageStore的start方法中,会启动一个后台线程reputMessageService。源码就定义在DefaultMessageStore中。这个后台线程每隔1毫秒就会去拉取CommitLog中最新更新的一批消息。如果发现CommitLog中有新的消息写入,就会触发一次doDispatch。
//org.apache.rocketmq.store.DefaultMessageStore中的ReputMessageService线程类public void doDispatch(DispatchRequest req) {for (CommitLogDispatcher dispatcher : this.dispatcherList) {dispatcher.dispatch(req);}}
dispatchList中包含两个关键的实现类CommitLogDispatcherBuildConsumeQueue和CommitLogDispatcherBuildIndex。源码就定义在DefaultMessageStore中。他们分别用来构建ConsumeQueue索引和IndexFile索引。
具体的构建逻辑比较复杂,在下面章节了解ConsumeQueue文件和IndexFile文件的具体构造后,会比较容易看懂一点。
并且,如果服务异常宕机,会造成CommitLog和ConsumeQueue、IndexFile文件不一致,有消息写入CommitLog后,没有分发到索引文件,这样消息就丢失了。DefaultMappedStore的load方法提供了恢复索引文件的方法,入口在load方法。
6、过期文件删除机制
入口: DefaultMessageStore.addScheduleTask -> DefaultMessageStore.this.cleanFilesPeriodically()
在这个方法中会启动两个线程,cleanCommitLogService用来删除过期的CommitLog文件,cleanConsumeQueueService用来删除过期的ConsumeQueue和IndexFile文件。
在删除CommitLog文件时,Broker会启动后台线程,每60秒,检查CommitLog、ConsumeQueue文件。然后对超过72小时的数据进行删除。也就是说,默认情况下, RocketMQ只会保存3天内的数据。这个时间可以通过fileReservedTime来配置。
触发过期文件删除时,有两个检查的纬度,一个是,是否到了触发删除的时间,也就是broker.conf里配置的deleteWhen属性。另外还会检查磁盘利用率,达到阈值也会触发过期文件删除。这个阈值默认是72%,可以在broker.conf文件当中定制。但是最大值为95,最小值为10。
然后在删除ConsumeQueue和IndexFile文件时,会去检查CommitLog当前的最小Offset,然后在删除时进行对齐。
需要注意的是,RocketMQ在删除过期CommitLog文件时,并不检查消息是否被消费过。 所以如果有消息长期没有被消费,是有可能直接被删除掉,造成消息丢失的。
RocketMQ整个文件管理的核心入口在DefaultMessageStore的start方法中,整体流程总结如下:
7、文件索引结构
了解了大部分的文件写入机制之后,最后我们来理解一下RocketMQ的索引构建方式。
1、CommitLog文件的大小是固定的,但是其中存储的每个消息单元长度是不固定的,具体格式可以参考org.apache.rocketmq.store.CommitLog中计算消息长度的方法
--javascripttypescriptshellbashsqljsonhtmlcssccppjavarubypythongorustmarkdown
protected static int calMsgLength(int sysFlag, int bodyLength, int topicLength, int propertiesLength) {int bornhostLength = (sysFlag & MessageSysFlag.BORNHOST_V6_FLAG) == 0 ? 8 : 20;int storehostAddressLength = (sysFlag & MessageSysFlag.STOREHOSTADDRESS_V6_FLAG) == 0 ? 8 : 20;final int msgLen = 4 //TOTALSIZE+ 4 //MAGICCODE+ 4 //BODYCRC+ 4 //QUEUEID+ 4 //FLAG+ 8 //QUEUEOFFSET+ 8 //PHYSICALOFFSET+ 4 //SYSFLAG+ 8 //BORNTIMESTAMP+ bornhostLength //BORNHOST+ 8 //STORETIMESTAMP+ storehostAddressLength //STOREHOSTADDRESS+ 4 //RECONSUMETIMES+ 8 //Prepared Transaction Offset+ 4 + (bodyLength > 0 ? bodyLength : 0) //BODY+ 1 + topicLength //TOPIC+ 2 + (propertiesLength > 0 ? propertiesLength : 0) //propertiesLength+ 0;return msgLen;}
正因为消息的记录大小不固定,所以RocketMQ在每次存CommitLog文件时,都会去检查当前CommitLog文件空间是否足够,如果不够的话,就重新创建一个CommitLog文件。文件名为当前消息的偏移量。
2、ConsumeQueue文件主要是加速消费者的消息索引。他的每个文件夹对应RocketMQ中的一个MessageQueue,文件夹下的文件记录了每个MessageQueue中的消息在CommitLog文件当中的偏移量。这样,消费者通过ComsumeQueue文件,就可以快速找到CommitLog文件中感兴趣的消息记录。而消费者在ConsumeQueue文件当中的消费进度,会保存在config/consumerOffset.json文件当中。
文件结构: 每个ConsumeQueue文件固定由30万个固定大小20byte的数据块组成,数据块的内容包括:msgPhyOffset(8byte,消息在文件中的起始位置)+msgSize(4byte,消息在文件中占用的长度)+msgTagCode(8byte,消息的tag的Hash值)。
msgTag是和消息索引放在一起的,所以,消费者根据Tag过滤消息的性能是非常高的。
在ConsumeQueue.java当中有一个常量CQ_STORE_UNIT_SIZE=20,这个常量就表示一个数据块的大小。
例如,在ConsumeQueue.java当中构建一条ConsumeQueue索引的方法 中,就是这样记录一个单元块的数据的。
--javascripttypescriptshellbashsqljsonhtmlcssccppjavarubypythongorustmarkdown
private boolean putMessagePositionInfo(final long offset, final int size, final long tagsCode,final long cqOffset) {if (offset + size <= this.maxPhysicOffset) {log.warn("Maybe try to build consume queue repeatedly maxPhysicOffset={} phyOffset={}", maxPhysicOffset, offset);return true;}this.byteBufferIndex.flip();this.byteBufferIndex.limit(CQ_STORE_UNIT_SIZE);this.byteBufferIndex.putLong(offset);this.byteBufferIndex.putInt(size);this.byteBufferIndex.putLong(tagsCode);//.......}
3、IndexFile文件主要是辅助消息检索。他的作用主要是用来支持根据key和timestamp检索消息。他的文件名比较特殊,不是以消息偏移量命名,而是用的时间命名。但是其实,他也是一个固定大小的文件。
文件结构: 他的文件结构由 indexHeader(固定40byte)+ slot(固定500W个,每个固定20byte) + index(最多500W*4个,每个固定20byte) 三个部分组成。
indexFile的详细结构有大厂之前面试过,可以参考一下我的博文: RocketMQ之底层IndexFile存储协议_roketmq有了consumequeue为啥还需要indexfile-CSDN博客
然后,了解这些文件结构有什么用呢?下面的延迟消息机制就是一个例子。
4.2 延迟消息机制
1、关注重点
延迟消息是RocketMQ非常有特色的一个功能,其他MQ产品中,往往需要开发者使用一些特殊方法来变相实现延迟消息功能。而RocketMQ直接在产品中实现了这个功能,开发者只需要设定一个属性就可以快速实现。
延迟消息的核心使用方法就是在Message中设定一个MessageDelayLevel参数,对应18个延迟级别。然后Broker中会创建一个默认的Schedule_Topic主题,这个主题下有18个队列,对应18个延迟级别。消息发过来之后,会先把消息存入Schedule_Topic主题中对应的队列。然后等延迟时间到了,再转发到目标队列,推送给消费者进行消费。
2、源码重点
延迟消息的处理入口在scheduleMessageService这个组件中。 他会在broker启动时也一起加载。
1、消息写入到系统内置的Topic中
代码见CommitLog.putMessage方法。
在CommitLog写入消息时,会判断消息的延迟级别,然后修改Message的Topic和Queue,将消息转储到系统内部的Topic中,这样消息就对消费者不可见了。而原始的目标信息,会作为消息的属性,保存到消息当中。
--javascripttypescriptshellbashsqljsonhtmlcssccppjavarubypythongorustmarkdown
if (tranType == MessageSysFlag.TRANSACTION_NOT_TYPE|| tranType == MessageSysFlag.TRANSACTION_COMMIT_TYPE) {// Delay Delivery//K1 延迟消息转到系统Topicif (msg.getDelayTimeLevel() > 0) {if (msg.getDelayTimeLevel() > this.defaultMessageStore.getScheduleMessageService().getMaxDelayLevel()) {msg.setDelayTimeLevel(this.defaultMessageStore.getScheduleMessageService().getMaxDelayLevel());}topic = TopicValidator.RMQ_SYS_SCHEDULE_TOPIC;int queueId = ScheduleMessageService.delayLevel2QueueId(msg.getDelayTimeLevel());// Backup real topic, queueIdMessageAccessor.putProperty(msg, MessageConst.PROPERTY_REAL_TOPIC, msg.getTopic());MessageAccessor.putProperty(msg, MessageConst.PROPERTY_REAL_QUEUE_ID, String.valueOf(msg.getQueueId()));msg.setPropertiesString(MessageDecoder.messageProperties2String(msg.getProperties()));//修改消息的Topic和Queue,转储到系统的Topic中。msg.setTopic(topic);msg.setQueueId(queueId);}}
十八个队列对应了十八个延迟级别,这也说明了为什么这种机制下不支持自定义时间戳。
2、消息转储到目标Topic
接下来就是需要过一点时间,再将消息转回到Producer提交的Topic和Queue中,这样就可以正常往消费者推送了。
这个转储的核心服务是scheduleMessageService,他也是Broker启动过程中的一个功能组件。随DefaultMessageStore组件一起构建。这个服务只在master节点上启动,而在slave节点上会主动关闭这个服务。
--javascripttypescriptshellbashsqljsonhtmlcssccppjavarubypythongorustmarkdown
//org.apache.rocketmq.store.DefaultMessageStore@Overridepublic void handleScheduleMessageService(final BrokerRole brokerRole) {if (this.scheduleMessageService != null) {if (brokerRole == BrokerRole.SLAVE) {this.scheduleMessageService.shutdown();} else {this.scheduleMessageService.start();}}}
由于RocketMQ的主从节点支持切换,所以就需要考虑这个服务的幂等性。在节点切换为slave时就要关闭服务,切换为master时就要启动服务。并且,即便节点多次切换为master,服务也只启动一次。所以在ScheduleMessageService的start方法中,就通过一个CAS操作来保证服务的启动状态。
--javascripttypescriptshellbashsqljsonhtmlcssccppjavarubypythongorustmarkdown
if (started.compareAndSet(false, true)) {
这个CAS操作还保证了在后面,同一时间只有一个DeliverDelayedMessageTimerTask执行。这种方式,给整个延迟消息服务提供了一个基础保证。
ScheduleMessageService会每隔1秒钟执行一个executeOnTimeup任务,将消息从延迟队列中写入正常Topic中。 代码见ScheduleMessageService中的DeliverDelayedMessageTimerTask.executeOnTimeup方法。
在executeOnTimeup方法中,就会去扫描SCHEDULE_TOPIC_XXXX这个Topic下的所有messageQueue,然后扫描这些MessageQueue对应的ConsumeQueue文件,找到没有处理过的消息,计算他们的延迟时间。如果延迟时间没有到,就等下一秒再重新扫描。如果延迟时间到了,就进行消息转储。将消息转回到原来的目标Topic下。
整个延迟消息的实现方式是这样的:
而ScheduleMessageService中扫描延迟消息的主要逻辑是这样的:
--javascripttypescriptshellbashsqljsonhtmlcssccppjavarubypythongorustmarkdown
//ScheduleMessageService.DeliverDelayedMessageTimerTask#executeOnTimeuppublic void executeOnTimeup() {//找到延迟队列对应的ConsumeQueue文件ConsumeQueue cq = ScheduleMessageService.this.defaultMessageStore.findConsumeQueue(TopicValidator.RMQ_SYS_SCHEDULE_TOPIC,delayLevel2QueueId(delayLevel));//...//通过计算,找到这一次扫描需要处理的的ConsumeQueue文件SelectMappedBufferResult bufferCQ = cq.getIndexBuffer(this.offset);//...try {//...//循环过滤ConsumeQueue文件当中的每一条消息索引for (; i < bufferCQ.getSize() && isStarted(); i += ConsumeQueue.CQ_STORE_UNIT_SIZE) {//解析每一条ConsumeQueue记录long offsetPy = bufferCQ.getByteBuffer().getLong();int sizePy = bufferCQ.getByteBuffer().getInt();long tagsCode = bufferCQ.getByteBuffer().getLong();//...//计算延迟时间long now = System.currentTimeMillis();long deliverTimestamp = this.correctDeliverTimestamp(now, tagsCode);nextOffset = offset + (i / ConsumeQueue.CQ_STORE_UNIT_SIZE);//延迟时间没到就等下一次扫描。long countdown = deliverTimestamp - now;if (countdown > 0) {this.scheduleNextTimerTask(nextOffset, DELAY_FOR_A_WHILE);return;}//...//时间到了就进行转储。boolean deliverSuc;if (ScheduleMessageService.this.enableAsyncDeliver) {deliverSuc = this.asyncDeliver(msgInner, msgExt.getMsgId(), nextOffset, offsetPy, sizePy);} else {deliverSuc = this.syncDeliver(msgInner, msgExt.getMsgId(), nextOffset, offsetPy, sizePy);}
//...}//计算下一次扫描时的Offset起点。nextOffset = this.offset + (i / ConsumeQueue.CQ_STORE_UNIT_SIZE);} catch (Exception e) {log.error("ScheduleMessageService, messageTimeup execute error, offset = {}", nextOffset, e);} finally {bufferCQ.release();}//部署下一次扫描任务this.scheduleNextTimerTask(nextOffset, DELAY_FOR_A_WHILE);}
你看。这段代码,如果你不懂ConsumeQueue文件的结构,大概率是看不懂他是在干什么的。但是如果清楚了ConsumeQueue文件的结构,就可以很清晰的感受到RocketMQ其实就是在Broker端,像一个普通消费者一样去进行消费,然后扩展出了延迟消息的整个扩展功能。而这,其实也是很多互联网大厂对RocketMQ进行自定义功能扩展的很好的参考。
当然,如果你有心深入分析下去的话,可以针对扫描的效率做更多的梳理以及总结。因为只要是延迟类任务,都需要不断进行扫描。但是如何提升扫描的效率其实是一个非常核心的问题。各种框架都有不同的设计思路,而RocketMQ其实就是给出了一个很高效的参考。
例如下面的长轮询机制,就是在普通消息流转过程中加入一些小逻辑,扩展出来的一种很好的优化机制。在花联网大厂中,会有很多类似这样的自定义优化机制。比如对于延迟消息,只支持十八个固定的延迟级别,但是在很多互联网大厂,其实早在官方提出5.0版本之前,就已经定制形成了支持任意延迟时间的扩展功能。
4.3 长轮询机制
1、功能回顾
RocketMQ对消息消费者提供了Push推模式和Pull拉模式两种消费模式。但是这两种消费模式的本质其实都是Pull拉模式,Push模式可以认为是一种定时的Pull机制。但是这时有一个问题,当使用Push模式时,如果RocketMQ中没有对应的数据,那难道一直进行空轮询吗?如果是这样的话,那显然会极大的浪费网络带宽以及服务器的性能,并且,当有新的消息进来时,RocketMQ也没有办法尽快通知客户端,而只能等客户端下一次来拉取消息了。针对这个问题,RocketMQ实现了一种长轮询机制 long polling。
长轮询机制简单来说,就是当Broker接收到Consumer的Pull请求时,判断如果没有对应的消息,不用直接给Consumer响应(给响应也是个空的,没意义),而是就将这个Pull请求给缓存起来。当Producer发送消息过来时,增加一个步骤去检查是否有对应的已缓存的Pull请求,如果有,就及时将请求从缓存中拉取出来,并将消息通知给Consumer。
2、源码重点
Consumer请求缓存,代码入口PullMessageProcessor#processRequest方法
PullRequestHoldService服务会随着BrokerController一起启动。
生产者线:从DefaultMessageStore.doReput进入
整个流程以及源码重点如下图所示:
5. 关于零拷贝与顺序写
5.1 刷盘机制保证消息不丢失
在操作系统层面,当应用程序写入一个文件时,文件内容并不会直接写入到硬件当中,而是会先写入到操作系统中的一个缓存PageCache中。PageCache缓存以4K大小为单位,缓存文件的具体内容。这些写入到PageCache中的文件,在应用程序看来,是已经完全落盘保存好了的,可以正常修改、复制等等。但是,本质上,PageCache依然是内存状态,所以一断电就会丢失。因此,需要将内存状态的数据写入到磁盘当中,这样数据才能真正完成持久化,断电也不会丢失。这个过程就称为刷盘。
Java当中使用FileOutputStream类或者BufferedWriter类,进行write操作,就是写入的Pagecache。
RocketMQ中通过fileChannel.commit方法写入消息,也是写入到Pagecache。
PageCache是源源不断产生的,而Linux操作系统显然不可能时时刻刻往硬盘写文件。所以,操作系统只会在某些特定的时刻将PageCache写入到磁盘。例如当我们正常关机时,就会完成PageCache刷盘。另外,在Linux中,对于有数据修改的PageCache,会标记为Dirty(脏页)状态。当Dirty Page的比例达到一定的阈值时,就会触发一次刷盘操作。例如在Linux操作系统中,可以通过/proc/meminfo文件查看到Page Cache的状态。
--javascripttypescriptshellbashsqljsonhtmlcssccppjavarubypythongorustmarkdown
[root@192-168-65-174 ~]# cat /proc/meminfo
MemTotal: 16266172 kB
.....
Cached: 923724 kB
.....
Dirty: 32 kB
Writeback: 0 kB
.....
Mapped: 133032 kB
.....
但是,只要操作系统的刷盘操作不是时时刻刻执行的,那么对于用户态的应用程序来说,那就避免不了非正常宕机时的数据丢失问题。因此,操作系统也提供了一个系统调用,应用程序可以自行调用这个系统调用,完成PageCache的强制刷盘。在Linux中是fsync,同样我们可以用man 2 fsync 指令查看。
RocketMQ对于何时进行刷盘,也设计了两种刷盘机制,同步刷盘和异步刷盘。只需要在broker.conf中进行配置就行。
RocketMQ到底是怎么实现同步刷盘和异步刷盘的,还记得吗?
5.2 零拷贝加速文件读写
零拷贝(zero-copy)是操作系统层面提供的一种加速文件读写的操作机制,非常多的开源软件都在大量使用零拷贝,来提升IO操作的性能。对于Java应用层,对应着mmap和sendFile两种方式。接下来,咱们深入操作系统来详细理解一下零拷贝。
1:理解CPU拷贝和DMA拷贝
我们知道,操作系统对于内存空间,是分为用户态和内核态的。用户态的应用程序无法直接操作硬件,需要通过内核空间进行操作转换,才能真正操作硬件。这其实是为了保护操作系统的安全。正因为如此,应用程序需要与网卡、磁盘等硬件进行数据交互时,就需要在用户态和内核态之间来回的复制数据。而这些操作,原本都是需要由CPU来进行任务的分配、调度等管理步骤的,早先这些IO接口都是由CPU独立负责,所以当发生大规模的数据读写操作时,CPU的占用率会非常高。
之后,操作系统为了避免CPU完全被各种IO调用给占用,引入了DMA(直接存储器存储)。由DMA来负责这些频繁的IO操作。DMA是一套独立的指令集,不会占用CPU的计算资源。这样,CPU就不需要参与具体的数据复制的工作,只需要管理DMA的权限即可。
DMA拷贝极大的释放了CPU的性能,因此他的拷贝速度会比CPU拷贝要快很多。但是,其实DMA拷贝本身,也在不断优化。
引入DMA拷贝之后,在读写请求的过程中,CPU不再需要参与具体的工作,DMA可以独立完成数据在系统内部的复制。但是,数据复制过程中,依然需要借助数据总进线。当系统内的IO操作过多时,还是会占用过多的数据总线,造成总线冲突,最终还是会影响数据读写性能。
为了避免DMA总线冲突对性能的影响,后来又引入了Channel通道的方式。Channel,是一个完全独立的处理器,专门负责IO操作。既然是处理器,Channel就有自己的IO指令,与CPU无关,他也更适合大型的IO操作,性能更高。
这也解释了,为什么Java应用层与零拷贝相关的操作都是通过Channel的子类实现的。这其实是借鉴了操作系统中的概念。
而所谓的零拷贝技术,其实并不是不拷贝,而是要尽量减少CPU拷贝。
2:再来理解下mmap文件映射机制是怎么回事。
mmap机制的具体实现参见配套示例代码。主要是通过java.nio.channels.FileChannel的map方法完成映射。
以一次文件的读写操作为例,应用程序对磁盘文件的读与写,都需要经过内核态与用户态之间的状态切换,每次状态切换的过程中,就需要有大量的数据复制。
在这个过程中,总共需要进行四次数据拷贝。而磁盘与内核态之间的数据拷贝,在操作系统层面已经由CPU拷贝优化成了DMA拷贝。而内核态与用户态之间的拷贝依然是CPU拷贝。所以,在这个场景下,零拷贝技术优化的重点,就是内核态与用户态之间的这两次拷贝。
而mmap文件映射的方式,就是在用户态不再保存文件的内容,而只保存文件的映射,包括文件的内存起始地址,文件大小等。真实的数据,也不需要在用户态留存,可以直接通过操作映射,在内核态完成数据复制。
这个拷贝过程都是在操作系统的系统调用层面完成的,在Java应用层,其实是无法直接观测到的,但是我们可以去JDK源码当中进行间接验证。在JDK的NIO包中,java.nio.HeapByteBuffer映射的就是JVM的一块堆内内存,在HeapByteBuffer中,会由一个byte数组来缓存数据内容,所有的读写操作也是先操作这个byte数组。这其实就是没有使用零拷贝的普通文件读写机制。
--javascripttypescriptshellbashsqljsonhtmlcssccppjavarubypythongorustmarkdown
HeapByteBuffer(int cap, int lim) { // package-privatesuper(-1, 0, lim, cap, new byte[cap], 0);/*hb = new byte[cap];offset = 0;*/}
而NIO把包中的另一个实现类java.nio.DirectByteBuffer则映射的是一块堆外内存。在DirectByteBuffer中,并没有一个数据结构来保存数据内容,只保存了一个内存地址。所有对数据的读写操作,都通过unsafe魔法类直接交由内核完成,这其实就是mmap的读写机制。
mmap文件映射机制,其实并不神秘,我们启动任何一个Java程序时,其实都大量用到了mmap文件映射。例如,我们可以在Linux机器上,运行一下下面这个最简单不过的应用程序:
--javascripttypescriptshellbashsqljsonhtmlcssccppjavarubypythongorustmarkdown
import java.util.Scanner;
public class BlockDemo {public static void main(String[] args) {Scanner scanner = new Scanner(System.in);final String s = scanner.nextLine();System.out.println(s);}
}
通过Java指令运行起来后,可以用jps查看到运行的进程ID。然后,就可以使用lsof -p {PID}的方式查看文件的映射情况。
这里面看到的mem类型的FD其实就是文件映射。
cwd 表示程序的工作目录。rtd 表示用户的根目录。 txt表示运行程序的指令。下面的1u表示Java应用的标准输出,2u表示Java应用的标准错误输出,默认的/dev/pts/1是linux当中的伪终端。通常服务器上会写 java xxx 1>text.txt 2>&1 这样的脚本,就是指定这里的1u,2u。
最后,这种mmap的映射机制由于还是需要用户态保存文件的映射信息,数据复制的过程也需要用户态的参与,这其中的变数还是非常多的。所以,mmap机制适合操作小文件,如果文件太大,映射信息也会过大,容易造成很多问题。通常mmap机制建议的映射文件大小不要超过2G 。而RocketMQ做大的CommitLog文件保持在1G固定大小,也是为了方便文件映射。
3:梳理下sendFile机制是怎么运行的。
sendFile机制的具体实现参见配套示例代码。主要是通过java.nio.channels.FileChannel的transferTo方法完成。
--javascripttypescriptshellbashsqljsonhtmlcssccppjavarubypythongorustmarkdown
sourceReadChannel.transferTo(0,sourceFile.length(),targetWriteChannel);
还记得Kafka当中是如何使用零拷贝的吗?你应该看到过这样的例子,就是Kafka将文件从磁盘复制到网卡时,就大量的使用了零拷贝。百度去搜索一下零拷贝,铺天盖地的也都是拿这个场景在举例。
早期的sendfile实现机制其实还是依靠CPU进行页缓存与socket缓存区之间的数据拷贝。但是,在后期的不断改进过程中,sendfile优化了实现机制,在拷贝过程中,并不直接拷贝文件的内容,而是只拷贝一个带有文件位置和长度等信息的文件描述符FD,这样就大大减少了需要传递的数据。而真实的数据内容,会交由DMA控制器,从页缓存中打包异步发送到socket中。
为什么大家都喜欢用这个场景来举例呢?其实我们去看下Linux操作系统的man帮助手册就能看到一部分答案。使用指令man 2 sendfile就能看到Linux操作系统对于sendfile这个系统调用的手册。
2.6.33版本以前的Linux内核中,out_fd只能是一个socket,所以网上铺天盖地的老资料都是拿网卡来举例。但是现在版本已经没有了这个限制。
最后,sendfile机制在内核态直接完成了数据的复制,不需要用户态的参与,所以这种机制的传输效率是非常稳定的。sendfile机制非常适合大数据的复制转移。
5.3 顺序写加速文件写入磁盘
通常应用程序往磁盘写文件时,由于磁盘空间不是连续的,会有很多碎片。所以我们去写一个文件时,也就无法把一个文件写在一块连续的磁盘空间中,而需要在磁盘多个扇区之间进行大量的随机写。这个过程中有大量的寻址操作,会严重影响写数据的性能。而顺序写机制是在磁盘中提前申请一块连续的磁盘空间,每次写数据时,就可以避免这些寻址操作,直接在之前写入的地址后面接着写就行。
Kafka官方详细分析过顺序写的性能提升问题。Kafka官方曾说明,顺序写的性能基本能够达到内存级别。而如果配备固态硬盘,顺序写的性能甚至有可能超过写内存。而RocketMQ很大程度上借鉴了Kafka的这种思想。
例如可以看下org.apache.rocketmq.store.CommitLog#DefaultAppendMessageCallback中的doAppend方法。在这个方法中,会以追加的方式将消息先写入到一个堆外内存byteBuffer中,然后再通过fileChannel写入到磁盘。