抽样信号——Sa函数sinc函数
抽样信号
抽样信号是一个比较特殊的信号,其数学表达式为:
S a ( t ) = sin t t {\rm Sa}(t) = \frac{\sin t}{t} Sa(t)=tsint
抽样函数 S a ( t ) {\rm Sa}(t) Sa(t)具有如下特点:
1. S a ( t ) {\rm Sa}(t) Sa(t)是偶对称的,即 S a ( − t ) = S a ( t ) {\rm Sa}(-t) = {\rm Sa}(t) Sa(−t)=Sa(t)。
2. 当 t = 0 t = 0 t=0时, S a ( t ) = 1 {\rm Sa}(t) = 1 Sa(t)=1;当 t = k π ( k = ± 1 , ± 2 , … ) t = k\pi (k = \pm 1, \pm 2, \ldots) t=kπ(k=±1,±2,…)时, S a ( t ) = 0 {\rm Sa}(t) = 0 Sa(t)=0。
3. 数学上, S a ( t ) {\rm Sa}(t) Sa(t)在整个时间域的积分值等于 π \pi π,即
∫ − ∞ + ∞ S a ( t ) d t = π \int_{-\infty}^{+\infty} {\rm Sa}(t) {\rm d}t= \pi ∫−∞+∞Sa(t)dt=π
根据对称性,自然有
∫ 0 + ∞ S a ( t ) d t = π 2 \int_{0}^{+\infty} {\rm Sa}(t) {\rm d}t= \frac{\pi}{2} ∫0+∞Sa(t)dt=2π
另一形式为sinc函数
sinc ( t ) = sin ( π t ) π t = Sa ( π t ) \text{sinc}(t) = \frac{\sin(\pi t)}{\pi t} = \text{Sa}(\pi t) sinc(t)=πtsin(πt)=Sa(πt)
- 当 t = 0 t = 0 t=0时, sinc ( t ) = 1 \text{sinc}(t) = 1 sinc(t)=1;
- 当 t = k ( k = ± 1 , ± 2 , ⋯ ) t = k (k = \pm 1, \pm 2, \cdots) t=k(k=±1,±2,⋯)时, sinc ( t ) = 0 \text{sinc}(t) = 0 sinc(t)=0;
∫ − ∞ + ∞ sinc ( t ) d t = 1 \int_{-\infty}^{+\infty} \text{sinc}(t) {\rm d}t= 1 ∫−∞+∞sinc(t)dt=1