重载“<<”操作符
#include <iostream>
#include <string>
#include <stdlib.h>
class Rational
{
public:
Rational(int num, int denom); // num = 分子, denom = 分母
Rational operator+(Rational rhs); // rhs == right hand side
Rational operator-(Rational rhs);
Rational operator*(Rational rhs);
Rational operator/(Rational rhs);
void print();
private:
void normalize(); // 负责对分数的简化处理
int numerator; // 分子
int denominator; // 分母
};
Rational::Rational(int num, int denom)
{
numerator = num;
denominator = denom;
normalize();
}
// normalize() 对分数进行简化操作包括:
// 1. 只允许分子为负数,如果分母为负数则把负数挪到分子部分,如 1/-2 == -1/2
// 2. 利用欧几里德算法(辗转求余原理)将分数进行简化:2/10 => 1/5
void Rational::normalize()
{
// 确保分母为正
if( denominator < 0 )
{
numerator = -numerator;
denominator = -denominator;
}
// 欧几里德算法
int a = abs(numerator); //把分子的绝对值赋值给a
int b = abs(denominator); //把分母的绝对值赋值给b
// 求出最大公约数(每一次循环都会更新a和b的值,直到b变为 0。当b为 0 时,a的值就是分子和分母的最大公约数。)
while( b > 0 )
{
int t = a % b;
a = b;
b = t;
}
// 分子、分母分别除以最大公约数得到最简化分数
numerator /= a;
denominator /= a;
}
// a c a*d c*b a*d + c*b
// - + - = --- + --- = ---------
// b d b*d b*d = b*d
Rational Rational::operator+(Rational rhs)
{
int a = numerator;
int b = denominator;
int c = rhs.numerator;
int d = rhs.denominator;
int e = a*b + c*d;
int f = b*d;
return Rational(e, f);
}
// a c a -c
// - - - = - + --
// b d b d
Rational Rational::operator-(Rational rhs)
{
rhs.numerator = -rhs.numerator;
return operator+(rhs);
}
// a c a*c
// - * - = ---
// b d b*d
Rational Rational::operator*(Rational rhs)
{
int a = numerator;
int b = denominator;
int c = rhs.numerator;
int d = rhs.denominator;
int e = a*c;
int f = b*d;
return Rational(e, f);
}
// a c a d
// - / - = - * -
// b d b c
Rational Rational::operator/(Rational rhs)
{
int t = rhs.numerator;
rhs.numerator = rhs.denominator;
rhs.denominator = t;
return operator*(rhs);
}
void Rational::print() // 1/8
{
if( numerator % denominator == 0 )
std::cout << numerator / denominator;
else
std::cout << numerator << "/" << denominator;
}
int main()
{
Rational f1(2, 16);
Rational f2(7, 8);
// 测试有理数加法运算
Rational res = f1 + f2;
f1.print();
std::cout << " + ";
f2.print();
std::cout << " = ";
res.print();
std::cout << "\n";
// 测试有理数减法运算
res = f1 - f2;
f1.print();
std::cout << " - ";
f2.print();
std::cout << " = ";
res.print();
std::cout << "\n";
// 测试有理数乘法运算
res = f1 * f2;
f1.print();
std::cout << " * ";
f2.print();
std::cout << " = ";
res.print();
std::cout << "\n";
// 测试有理数除法运算
res = f1 / f2;
f1.print();
std::cout << " / ";
f2.print();
std::cout << " = ";
res.print();
std::cout << "\n";
return 0;
}
- main函数里边要多次调用 print 方法才能实现打印,可读性仍然欠佳
- 通过重载 << 操作符来实现 print 打印的功能。( << 官方叫插入器)例如: std::cout << “Hello ” ;
- C 标准库对左移操作符( << )进行了重载,让它可以把值发送到一个流去。(流来流去的概念)
- 但是在这个栗子中, iostream 库对新的Rational 类表示一无所知,所以不能直接用 <<来输出。
- 当然,我们无法在现有的 ostream 类里专门添加一个新的 operator << ()方法。只能定义一个正常的函数在外部重载这个操作符,这与重载方法的语法大同小异,唯一的区别是不再有一个对象可以用来调用 << 重载函数,而不得不通过第一个输入参数向这个重载方法传递对象
- 注意区别前边我们对四则运算符的重载。
下面是一个 operator << ()函数的原型:
std::ostream& operator<<( std::ostream& os,Rational f );
- 第一个输入参数 os 是将要向它写数据的那个流,它是以“引用传递”方式传递的;
- 第二个输入参数是打算写到那个流里的数据值。
- 不同的 operator << ()重载函数就是因为这个输入参数才相互区别的。
- 返回类型是 ostream 流的引用。一般来说,在调用 operator << ()重载函数时传递给它的是哪一个流,它返回的就应该是那个流的一个引用。
#include <iostream>
#include <string>
#include <stdlib.h>
class Rational
{
public:
Rational(int num, int denom); // num = 分子, denom = 分母
Rational operator+(Rational rhs); // rhs == right hand side
Rational operator-(Rational rhs);
Rational operator*(Rational rhs);
Rational operator/(Rational rhs);
private:
void normalize(); // 负责对分数的简化处理
int numerator; // 分子
int denominator; // 分母
friend std::ostream& operator<<(std::ostream& os, Rational f);
};
Rational::Rational(int num, int denom)
{
numerator = num;
denominator = denom;
normalize();
}
// normalize() 对分数进行简化操作包括:
// 1. 只允许分子为负数,如果分母为负数则把负数挪到分子部分,如 1/-2 == -1/2
// 2. 利用欧几里德算法(辗转求余原理)将分数进行简化:2/10 => 1/5
void Rational::normalize()
{
// 确保分母为正
if( denominator < 0 )
{
numerator = -numerator;
denominator = -denominator;
}
// 欧几里德算法
int a = abs(numerator);
int b = abs(denominator);
// 求出最大公约数
while( b > 0 )
{
int t = a % b;
a = b;
b = t;
}
// 分子、分母分别除以最大公约数得到最简化分数
numerator /= a;
denominator /= a;
}
// a c a*d c*b a*d + c*b
// - + - = --- + --- = ---------
// b d b*d b*d = b*d
Rational Rational::operator+(Rational rhs)
{
int a = numerator;
int b = denominator;
int c = rhs.numerator;
int d = rhs.denominator;
int e = a*b + c*d;
int f = b*d;
return Rational(e, f);
}
// a c a -c
// - - - = - + --
// b d b d
Rational Rational::operator-(Rational rhs)
{
rhs.numerator = -rhs.numerator;
return operator+(rhs);
}
// a c a*c
// - * - = ---
// b d b*d
Rational Rational::operator*(Rational rhs)
{
int a = numerator;
int b = denominator;
int c = rhs.numerator;
int d = rhs.denominator;
int e = a*c;
int f = b*d;
return Rational(e, f);
}
// a c a d
// - / - = - * -
// b d b c
Rational Rational::operator/(Rational rhs)
{
int t = rhs.numerator;
rhs.numerator = rhs.denominator;
rhs.denominator = t;
return operator*(rhs);
}
std::ostream& operator<<(std::ostream& os, Rational f);
int main()
{
Rational f1(2, 16);
Rational f2(7, 8);
// 测试有理数加法运算
std::cout << f1 << " + " << f2 << " == " << (f1+f2) << "\n";
// 测试有理数减法运算
std::cout << f1 << " - " << f2 << " == " << (f1-f2) << "\n";
// 测试有理数乘法运算
std::cout << f1 << " * " << f2 << " == " << (f1*f2) << "\n";
// 测试有理数除法运算
std::cout << f1 << " / " << f2 << " == " << (f1/f2) << "\n";
return 0;
}
std::ostream& operator<<(std::ostream& os, Rational f)
{
os << f.numerator << "/" << f.denominator;
return os;
}
未完待续。。。