当前位置: 首页 > news >正文

instructor 实现 reranker 功能

目录

    • 代码
    • 代码解释
      • 1. 导入和初始化
      • 2. Label 类定义
      • 3. RerankedResults 类
      • 4. 重排序函数
    • 示例
    • 类似例子
    • 例子中的jinjia模板语法
      • 变量
      • 2. 控制结构
        • 条件语句
        • 循环语句

代码

import instructor
from openai import OpenAI
from pydantic import BaseModel, Field, field_validator, ValidationInfo

# Initialize the OpenAI client with Instructor
client = instructor.from_openai(OpenAI(api_key = "your api key",
    base_url="https://dashscope.aliyuncs.com/compatible-mode/v1"))

class Label(BaseModel):
    chunk_id: str = Field(description="The unique identifier of the text chunk")
    chain_of_thought: str = Field(
        description="The reasoning process used to evaluate the relevance"
    )
    relevancy: int = Field(
        description="Relevancy score from 0 to 10, where 10 is most relevant",
        ge=0,
        le=10,
    )

    @field_validator("chunk_id")
    @classmethod
    def validate_chunk_id(cls, v: str, info: ValidationInfo) -> str:
        context = info.context
        chunks = context.get("chunks", [])
        if v not in [chunk["id"] for chunk in chunks]:
            raise ValueError(
                f"Chunk with id {v} not found, must be one of {[chunk['id'] for chunk in chunks]}"
            )
        return v


class RerankedResults(BaseModel):
    labels: list[Label] = Field(description="List of labeled and ranked chunks")

    @field_validator("labels")
    @classmethod
    def model_validate(cls, v: list[Label]) -> list[Label]:
        return sorted(v, key=lambda x: x.relevancy, reverse=True)


def rerank_results(query: str, chunks: list[dict]) -> RerankedResults:
    return client.chat.completions.create(
        model="qwen-turbo",
        response_model=RerankedResults,
        messages=[
            {
                "role": "system",
                "content": """
                You are an expert search result ranker. Your task is to evaluate the relevance of each text chunk to the given query and assign a relevancy score.

                For each chunk:
                1. Analyze its content in relation to the query.
                2. Provide a chain of thought explaining your reasoning.
                3. Assign a relevancy score from 0 to 10, where 10 is most relevant.

                Be objective and consistent in your evaluations.
                """,
            },
            {
                "role": "user",
                "content": """
                <query>{{ query }}</query>

                <chunks_to_rank>
                {% for chunk in chunks %}
                <chunk chunk_id="{{ chunk.id }}">
                    {{ chunk.text }}
                </chunk>
                {% endfor %}
                </chunks_to_rank>

                Please provide a RerankedResults object with a Label for each chunk.
                """,
            },
        ],
        context={"query": query, "chunks": chunks},
    )

代码解释

1. 导入和初始化

import instructor
from openai import OpenAI
from pydantic import BaseModel, Field, field_validator, ValidationInfo

client = instructor.from_openai(OpenAI(...))
  • 使用 instructor 增强 OpenAI 功能
  • 使用 Pydantic 进行数据验证和序列化

2. Label 类定义

class Label(BaseModel):
    chunk_id: str = Field(...)
    chain_of_thought: str = Field(...)
    relevancy: int = Field(..., ge=0, le=10)

定义了文本块的标签模型:

  • chunk_id: 文本块的唯一标识符
  • chain_of_thought: 相关性评估的推理过程
  • relevancy: 0-10的相关性得分

包含了一个验证器:

@field_validator("chunk_id")
def validate_chunk_id(cls, v: str, info: ValidationInfo) -> str:

确保 chunk_id 存在于输入的文本块列表中

3. RerankedResults 类

class RerankedResults(BaseModel):
    labels: list[Label]
  • 存储所有标签的容器类
  • 包含一个验证器,按相关性得分降序排序结果

4. 重排序函数

def rerank_results(query: str, chunks: list[dict]) -> RerankedResults:

核心功能:

  • 接收查询和文本块列表
  • 使用 AI 模型评估相关性
  • 返回排序后的结果

系统提示设置:

  • 定义 AI 为专家排序系统
  • 提供评估标准和打分规则

用户提示模板:

  • 使用 Jinja2 模板语法
  • 动态插入查询和文本块
  • 格式化为结构化的 XML 格式

这个系统的主要用途:

  1. 智能文本相关性排序
  2. 提供透明的推理过程
  3. 确保结果的一致性和可验证性

示例

def main():
    # Sample query and chunks
    query = "What are the health benefits of regular exercise?"
    chunks = [
        {
            "id": "a1b2c3d4-e5f6-7890-abcd-ef1234567890",
            "text": "Regular exercise can improve cardiovascular health and reduce the risk of heart disease.",
        },
        {
            "id": "b2c3d4e5-f6g7-8901-bcde-fg2345678901",
            "text": "The price of gym memberships varies widely depending on location and facilities.",
        },
        {
            "id": "c3d4e5f6-g7h8-9012-cdef-gh3456789012",
            "text": "Exercise has been shown to boost mood and reduce symptoms of depression and anxiety.",
        },
        {
            "id": "d4e5f6g7-h8i9-0123-defg-hi4567890123",
            "text": "Proper nutrition is essential for maintaining a healthy lifestyle.",
        },
        {
            "id": "e5f6g7h8-i9j0-1234-efgh-ij5678901234",
            "text": "Strength training can increase muscle mass and improve bone density, especially important as we age.",
        },
    ]

    # Rerank the results
    results = rerank_results(query, chunks)

    # Print the reranked results
    print("Reranked results:")
    for label in results.labels:
        print(f"Chunk {label.chunk_id} (Relevancy: {label.relevancy}):")
        print(
            f"Text: {next(chunk['text'] for chunk in chunks if chunk['id'] == label.chunk_id)}"
        )
        print(f"Reasoning: {label.chain_of_thought}")
        print()

main()
Reranked results:
Chunk a1b2c3d4-e5f6-7890-abcd-ef1234567890 (Relevancy: 10):
Text: Regular exercise can improve cardiovascular health and reduce the risk of heart disease.
Reasoning: This chunk directly discusses the health benefits of exercise, specifically improving cardiovascular health and reducing heart disease risk.

Chunk c3d4e5f6-g7h8-9012-cdef-gh3456789012 (Relevancy: 8):
Text: Exercise has been shown to boost mood and reduce symptoms of depression and anxiety.
Reasoning: This chunk talks about how exercise can boost mood and reduce symptoms of depression and anxiety, which are health benefits.

Chunk e5f6g7h8-i9j0-1234-efgh-ij5678901234 (Relevancy: 7):
Text: Strength training can increase muscle mass and improve bone density, especially important as we age.
Reasoning: Strength training's effects on muscle mass and bone density are health benefits associated with exercise.

Chunk d4e5f6g7-h8i9-0123-defg-hi4567890123 (Relevancy: 2):
Text: Proper nutrition is essential for maintaining a healthy lifestyle.
Reasoning: While nutrition is important, this chunk does not discuss the health benefits of exercise itself.

Chunk b2c3d4e5-f6g7-8901-bcde-fg2345678901 (Relevancy: 0):
Text: The price of gym memberships varies widely depending on location and facilities.
Reasoning: This chunk is about gym membership prices, which is unrelated to the health benefits of exercise.

类似例子

import instructor
from openai import OpenAI
from pydantic import BaseModel, Field, field_validator, ValidationInfo

# 初始化 OpenAI 客户端
client = instructor.from_openai(OpenAI(api_key = "your api key",
    base_url="https://dashscope.aliyuncs.com/compatible-mode/v1"))

class ReviewLabel(BaseModel):
    review_id: str = Field(description="评论的唯一标识符")
    chain_of_thought: str = Field(
        description="评估相关性的推理过程"
    )
    relevancy: int = Field(
        description="相关性得分,0-10分,10分最相关",
        ge=0,
        le=10,
    )

    @field_validator("review_id")
    @classmethod
    def validate_review_id(cls, v: str, info: ValidationInfo) -> str:
        context = info.context
        reviews = context.get("reviews", [])
        if v not in [review["id"] for review in reviews]:
            raise ValueError(
                f"找不到ID为 {v} 的评论,必须是以下ID之一: {[review['id'] for review in reviews]}"
            )
        return v

class RankedReviews(BaseModel):
    labels: list[ReviewLabel] = Field(description="已标记和排序的评论列表")

    @field_validator("labels")
    @classmethod
    def model_validate(cls, v: list[ReviewLabel]) -> list[ReviewLabel]:
        return sorted(v, key=lambda x: x.relevancy, reverse=True)

def rank_reviews(movie_title: str, reviews: list[dict]) -> RankedReviews:
    return client.chat.completions.create(
        model="qwen-turbo",
        response_model=RankedReviews,
        messages=[
            {
                "role": "system",
                "content": """
                你是一个专业的电影评论分析专家。你的任务是评估每条评论与给定电影的相关性,并给出相关性得分。

                对每条评论:
                1. 分析评论内容与电影的相关程度
                2. 提供推理过程说明你的评分理由
                3. 给出0-10的相关性得分,10分表示最相关

                请保持客观和一致性。
                """,
            },
            {
                "role": "user",
                "content": """
                <movie>{{ movie_title }}</movie>

                <reviews_to_rank>
                {% for review in reviews %}
                <review review_id="{{ review.id }}">
                    {{ review.text }}
                </review>
                {% endfor %}
                </reviews_to_rank>

                请提供一个包含每条评论标签的RankedReviews对象。
                """,
            },
        ],
        context={"movie_title": movie_title, "reviews": reviews},
    )

def main():
    # 示例数据
    movie_title = "泰坦尼克号"
    reviews = [
        {
            "id": "rev001",
            "text": "这部电影完美展现了泰坦尼克号的悲剧,演员表演令人动容。",
        },
        {
            "id": "rev002",
            "text": "最近电影票价格上涨了不少,看电影越来越贵了。",
        },
        {
            "id": "rev003",
            "text": "Jack和Rose的爱情故事让人难忘,经典场景依然令人感动。",
        },
        {
            "id": "rev004",
            "text": "这家电影院的爆米花很好吃,推荐尝试。",
        },
        {
            "id": "rev005",
            "text": "电影的特效和场景还原都很精良,展现了那个年代的奢华。",
        },
    ]

    # 对评论进行排序
    results = rank_reviews(movie_title, reviews)

    # 打印排序结果
    print("评论排序结果:")
    for label in results.labels:
        print(f"评论 {label.review_id} (相关性得分: {label.relevancy}):")
        print(
            f"内容: {next(review['text'] for review in reviews if review['id'] == label.review_id)}"
        )
        print(f"推理过程: {label.chain_of_thought}")
        print()

main()
评论排序结果:
评论 rev001 (相关性得分: 10):
内容: 这部电影完美展现了泰坦尼克号的悲剧,演员表演令人动容。
推理过程: 评论直接提到电影《泰坦尼克号》,并赞扬其悲剧展现和演员表演,明显与电影高度相关。

评论 rev003 (相关性得分: 9):
内容: Jack和Rose的爱情故事让人难忘,经典场景依然令人感动。
推理过程: 评论聚焦于电影中的爱情故事和经典场景,与《泰坦尼克号》的主题紧密相关。

评论 rev005 (相关性得分: 8):
内容: 电影的特效和场景还原都很精良,展现了那个年代的奢华。
推理过程: 评论称赞电影的特效和场景还原,这与《泰坦尼克号》的内容直接相关。

评论 rev002 (相关性得分: 2):
内容: 最近电影票价格上涨了不少,看电影越来越贵了。
推理过程: 评论讨论的是电影票价上涨的问题,与具体电影《泰坦尼克号》无关,因此相关性较低。

评论 rev004 (相关性得分: 1):
内容: 这家电影院的爆米花很好吃,推荐尝试。
推理过程: 评论谈论的是电影院的爆米花,与电影本身无直接关系,因此相关性很低。

例子中的jinjia模板语法

例子中用到Jinja 模板语法的核心概念:

变量

{{ 变量名 }}

用于在模板中插入变量值,例如:

"你好,{{ username }}"  # 如果 username = "小明",输出: "你好,小明"

2. 控制结构

条件语句
{% if 条件 %}
    内容1
{% else %}
    内容2
{% endif %}
循环语句
{% for item in items %}
    {{ item }}
{% endfor %}

Jinja 模板的主要优势:

  1. 代码复用
  2. 逻辑与展示分离
  3. 动态内容生成
  4. 安全性(自动转义)
  5. 灵活的扩展性

这些特性使得 Jinja2 成为 Python 生态系统中最流行的模板引擎之一。

例子1:

from instructor.templating import handle_templating
from instructor.mode import Mode
# 输入参数示例
kwargs = {
    "messages": [
        {
            "role": "system",
            "content": "你是一个专业的{{ domain }}助手"
        },
        {
            "role": "user",
            "content": "请分析关于{{ topic }}的问题"
        }
    ]
}

mode = Mode.TOOLS  # 使用 OpenAI 格式

context = {
    "domain": "医疗",
    "topic": "心脏病预防"
}

# 调用函数
result = handle_templating(kwargs, mode, context)

# 输出结果
print(result)

{'messages': [{'role': 'system', 'content': '你是一个专业的医疗助手'}, {'role': 'user', 'content': '请分析关于心脏病预防的问题'}]}

例子2:

query = "What are the health benefits of regular exercise?"
chunks = [
    {
        "id": "a1b2c3d4-e5f6-7890-abcd-ef1234567890",
        "text": "Regular exercise can improve cardiovascular health and reduce the risk of heart disease.",
    },
    {
        "id": "b2c3d4e5-f6g7-8901-bcde-fg2345678901",
        "text": "The price of gym memberships varies widely depending on location and facilities.",
    },
    {
        "id": "c3d4e5f6-g7h8-9012-cdef-gh3456789012",
        "text": "Exercise has been shown to boost mood and reduce symptoms of depression and anxiety.",
    },
    {
        "id": "d4e5f6g7-h8i9-0123-defg-hi4567890123",
        "text": "Proper nutrition is essential for maintaining a healthy lifestyle.",
    },
    {
        "id": "e5f6g7h8-i9j0-1234-efgh-ij5678901234",
        "text": "Strength training can increase muscle mass and improve bone density, especially important as we age.",
    },
]

kwargs = {
    "messages": [
            {
                "role": "system",
                "content": """
                You are an expert search result ranker. Your task is to evaluate the relevance of each text chunk to the given query and assign a relevancy score.

                For each chunk:
                1. Analyze its content in relation to the query.
                2. Provide a chain of thought explaining your reasoning.
                3. Assign a relevancy score from 0 to 10, where 10 is most relevant.

                Be objective and consistent in your evaluations.
                """,
            },
            {
                "role": "user",
                "content": """
                <query>{{ query }}</query>

                <chunks_to_rank>
                {% for chunk in chunks %}
                <chunk chunk_id="{{ chunk.id }}">
                    {{ chunk.text }}
                </chunk>
                {% endfor %}
                </chunks_to_rank>

                Please provide a RerankedResults object with a Label for each chunk.
                """,
            },
        ]
}

context={"query": query, "chunks": chunks}

mode = Mode.TOOLS  # 使用 OpenAI 格式

# 调用函数
handle_templating(kwargs, mode, context)

{'messages': [{'role': 'system',
   'content': '\nYou are an expert search result ranker. Your task is to evaluate the relevance of each text chunk to the given query and assign a relevancy score.\n\nFor each chunk:\n1. Analyze its content in relation to the query.\n2. Provide a chain of thought explaining your reasoning.\n3. Assign a relevancy score from 0 to 10, where 10 is most relevant.\n\nBe objective and consistent in your evaluations.\n'},
  {'role': 'user',
   'content': '\n<query>What are the health benefits of regular exercise?</query>\n\n<chunks_to_rank>\n\n<chunk chunk_id="a1b2c3d4-e5f6-7890-abcd-ef1234567890">\n    Regular exercise can improve cardiovascular health and reduce the risk of heart disease.\n</chunk>\n\n<chunk chunk_id="b2c3d4e5-f6g7-8901-bcde-fg2345678901">\n    The price of gym memberships varies widely depending on location and facilities.\n</chunk>\n\n<chunk chunk_id="c3d4e5f6-g7h8-9012-cdef-gh3456789012">\n    Exercise has been shown to boost mood and reduce symptoms of depression and anxiety.\n</chunk>\n\n<chunk chunk_id="d4e5f6g7-h8i9-0123-defg-hi4567890123">\n    Proper nutrition is essential for maintaining a healthy lifestyle.\n</chunk>\n\n<chunk chunk_id="e5f6g7h8-i9j0-1234-efgh-ij5678901234">\n    Strength training can increase muscle mass and improve bone density, especially important as we age.\n</chunk>\n\n</chunks_to_rank>\n\nPlease provide a RerankedResults object with a Label for each chunk.\n'}]}

参考链接:https://github.com/instructor-ai/instructor/tree/main

相关文章:

  • AtCoder Beginner Contest 401
  • Python yield关键字
  • 基于统计方法的水文数据分析及AI拓展
  • windows中搭建Ubuntu子系统
  • [极客大挑战 2019]Upload
  • redis单机安装
  • 智能指针之设计模式1
  • Vue--常用组件解析
  • C#容器源码分析 --- Dictionary<TKey,TValue>
  • 测试复习题目(1)
  • 论文学习:《通过基于元学习的图变换探索冷启动场景下的药物-靶标相互作用预测》
  • C++基础精讲-05
  • 4G/5G模组----概念+驱动+调试
  • 《轨道力学导论》——第十章:前沿轨道理论与应用
  • Java常用连接池 (HikariCP, Tomcat Pool, Druid) 的配置和比较
  • Nginx代理Minio出现AccessDeniedAccessDenied
  • 软件生命周期模型:瀑布模型、螺旋模型、迭代模型、敏捷开发、增量模型、快速原型模型
  • JUC并发工具
  • ARM裸机开发——交叉编译器
  • IS-IS中特殊字段——OL过载
  • 一季度支持科技创新和制造业发展减税降费及退税4241亿元
  • 俄乌刚谈完美国便筹划与俄乌领导人通话,目的几何?
  • 马上评|家长抱婴儿值护学岗,如何避免“被自愿”?
  • 竞彩湃|欧联杯决赛前,曼联、热刺继续划水?
  • 悬疑剧背后的女编剧:创作的差异不在性别,而在经验
  • 既是工具又是食物,可食用机器人开启舌尖上的新科技