组合数学——二项式系数
3.1 二项式定理
定理 3.1.1(二项式定理)
设
n
n
n 为一正整数,则对任意的
x
x
x 和
y
y
y,有
(
x
+
y
)
n
=
y
n
+
(
n
1
)
x
y
n
−
1
+
(
n
2
)
x
2
y
n
−
2
+
⋯
+
(
n
n
−
1
)
x
n
−
1
y
+
x
n
(x + y)^n = y^n + \binom{n}{1}x y^{n-1} + \binom{n}{2}x^2 y^{n-2} + \cdots + \binom{n}{n-1}x^{n-1} y + x^n
(x+y)n=yn+(1n)xyn−1+(2n)x2yn−2+⋯+(n−1n)xn−1y+xn
或等价地表示为:
(
x
+
y
)
n
=
∑
r
=
0
n
(
n
r
)
x
r
y
n
−
r
.
(x + y)^n = \sum_{r=0}^n \binom{n}{r} x^r y^{n-r}.
(x+y)n=r=0∑n(rn)xryn−r.
定理 3.1.2
对一切实数
α
\alpha
α 和
x
x
x(
∣
x
∣
<
1
|x| < 1
∣x∣<1),有
(
1
+
x
)
α
=
∑
r
=
0
∞
(
α
r
)
x
r
,
(1 + x)^{\alpha} = \sum_{r=0}^{\infty} \binom{\alpha}{r} x^r,
(1+x)α=r=0∑∞(rα)xr,
其中
(
α
r
)
=
α
(
α
−
1
)
⋯
(
α
−
r
+
1
)
r
!
.
\binom{\alpha}{r} = \frac{\alpha(\alpha - 1)\cdots(\alpha - r + 1)}{r!}.
(rα)=r!α(α−1)⋯(α−r+1).
(1)
α
=
−
n
\alpha=-n
α=−n
(
1
+
x
)
−
n
=
∑
r
=
0
∞
(
−
1
)
r
(
n
+
r
−
1
r
)
x
r
.
(1 + x)^{-n} = \sum_{r=0}^{\infty} (-1)^r \binom{n + r - 1}{r} x^r.
(1+x)−n=r=0∑∞(−1)r(rn+r−1)xr.
(2)
α
=
1
2
\alpha=\frac{1}{2}
α=21
(
1
+
x
)
1
2
=
∑
r
=
0
+
∞
(
−
1
)
r
−
1
⋅
1
r
⋅
2
2
r
−
1
⋅
(
2
r
−
2
r
−
1
)
x
r
.
(1 + x)^{\frac{1}{2}} = \sum_{r=0}^{+\infty} (-1)^{r-1} \cdot \frac{1}{r \cdot 2^{2r-1}} \cdot \binom{2r - 2}{r - 1}x^r.
(1+x)21=r=0∑+∞(−1)r−1⋅r⋅22r−11⋅(r−12r−2)xr.
3.2二项式系数
当 n , r n, r n,r 均为非负整数,且 n ≥ r n \geq r n≥r 时, ( n r ) \binom{n}{r} (rn) 有一些基本的性质:
-
对称关系
( n r ) = ( n n − r ) \binom{n}{r} = \binom{n}{n-r} (rn)=(n−rn) -
递推关系
( n r ) = ( n − 1 r ) + ( n − 1 r − 1 ) ( n ≥ r ≥ 1 ) \binom{n}{r} = \binom{n-1}{r} + \binom{n-1}{r-1} \quad (n \geq r \geq 1) (rn)=(rn−1)+(r−1n−1)(n≥r≥1)
-
单峰性
当 n n n 为偶数时,有
( n 0 ) < ( n 1 ) < ⋯ < ( n n 2 ) , ( n n 2 ) > ⋯ > ( n n − 1 ) > ( n n ) \binom{n}{0} < \binom{n}{1} < \cdots < \binom{n}{\frac{n}{2}}, \binom{n}{\frac{n}{2}} > \cdots > \binom{n}{n-1} > \binom{n}{n} (0n)<(1n)<⋯<(2nn),(2nn)>⋯>(n−1n)>(nn)当 n n n 为奇数时,有
( n 0 ) < ( n 1 ) < ⋯ < ( n n − 1 2 ) = ( n n + 1 2 ) , ⋯ \binom{n}{0} < \binom{n}{1} < \cdots < \binom{n}{\frac{n-1}{2}} = \binom{n}{\frac{n+1}{2}}, \cdots (0n)<(1n)<⋯<(2n−1n)=(2n+1n),⋯
3.3组合恒等式
等式 1
( n 0 ) + ( n 1 ) + ⋯ + ( n n ) = 2 n . \binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{n} = 2^n. (0n)+(1n)+⋯+(nn)=2n.
证明: 在二项式定理中令 x = y = 1 x = y = 1 x=y=1 即可。
等式 2
( n 0 ) + ( n 2 ) + ( n 4 ) + ⋯ = ( n 1 ) + ( n 3 ) + ( n 5 ) + ⋯ . \binom{n}{0} + \binom{n}{2} + \binom{n}{4} + \cdots = \binom{n}{1} + \binom{n}{3} + \binom{n}{5} + \cdots. (0n)+(2n)+(4n)+⋯=(1n)+(3n)+(5n)+⋯.
证明: 在二项式定理中令
x
=
−
1
,
y
=
1
x = -1, y = 1
x=−1,y=1,得
∑
k
=
0
n
(
−
1
)
k
(
n
k
)
=
0.
\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0.
k=0∑n(−1)k(kn)=0.
整理一下即得。
等式 3
1 ⋅ ( n 1 ) + 2 ⋅ ( n 2 ) + ⋯ + n ⋅ ( n n ) = n ⋅ 2 n − 1 . 1 \cdot \binom{n}{1} + 2 \cdot \binom{n}{2} + \cdots + n \cdot \binom{n}{n} = n \cdot 2^{n-1}. 1⋅(1n)+2⋅(2n)+⋯+n⋅(nn)=n⋅2n−1.
证明: 对等式
(
1
+
x
)
n
=
∑
i
=
0
n
(
n
i
)
x
i
(1 + x)^n = \sum_{i=0}^{n} \binom{n}{i} x^i
(1+x)n=i=0∑n(in)xi
两边在
x
=
1
x = 1
x=1 处求导数,得
[
(
1
+
x
)
n
]
x
=
1
′
=
n
(
1
+
x
)
n
−
1
∣
x
=
1
=
n
2
n
−
1
,
\left[(1 + x)^n\right]'_{x=1} = n(1 + x)^{n-1}\big|_{x=1} = n2^{n-1},
[(1+x)n]x=1′=n(1+x)n−1
x=1=n2n−1,
[ ∑ i = 0 n ( n i ) x i ] x = 1 ′ = ∑ i = 1 n i ( n i ) x i − 1 ∣ x = 1 = ∑ i = 1 n i ( n i ) , \left[\sum_{i=0}^{n} \binom{n}{i} x^i\right]'_{x=1} = \sum_{i=1}^{n} i \binom{n}{i} x^{i-1}\big|_{x=1} = \sum_{i=1}^{n} i \binom{n}{i}, [i=0∑n(in)xi]x=1′=i=1∑ni(in)xi−1 x=1=i=1∑ni(in),
从而
1
⋅
(
n
1
)
+
2
⋅
(
n
2
)
+
⋯
+
n
⋅
(
n
n
)
=
n
⋅
2
n
−
1
.
1 \cdot \binom{n}{1} + 2 \cdot \binom{n}{2} + \cdots + n \cdot \binom{n}{n} = n \cdot 2^{n-1}.
1⋅(1n)+2⋅(2n)+⋯+n⋅(nn)=n⋅2n−1.
等式 4
( 0 k ) + ( 1 k ) + ⋯ + ( n k ) = ( n + 1 k + 1 ) . \binom{0}{k} + \binom{1}{k} + \cdots + \binom{n}{k} = \binom{n+1}{k+1}. (k0)+(k1)+⋯+(kn)=(k+1n+1).
等式 5
∑ k = 0 n ( n k ) 2 = ( 2 n n ) \sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n} k=0∑n(kn)2=(n2n)
等式 6
∑ i = 0 m ( m i ) ( n r + i ) = ( m + n m + r ) \sum_{i=0}^{m} \binom{m}{i} \binom{n}{r+i} = \binom{m+n}{m+r} i=0∑m(im)(r+in)=(m+rm+n)
3.4多项式定理
定理 3.4.1
设 n n n 为正整数,则
( x 1 + x 2 + ⋯ + x t ) n = ∑ ( n n 1 n 2 ⋯ n t ) x 1 n 1 x 2 n 2 ⋯ x t n t , (x_1 + x_2 + \cdots + x_t)^n = \sum \binom{n}{n_1 n_2 \cdots n_t} x_1^{n_1} x_2^{n_2} \cdots x_t^{n_t}, (x1+x2+⋯+xt)n=∑(n1n2⋯ntn)x1n1x2n2⋯xtnt,
其中
( n n 1 n 2 ⋯ n t ) = n ! n 1 ! n 2 ! ⋯ n t ! \binom{n}{n_1 n_2 \cdots n_t} = \frac{n!}{n_1! n_2! \cdots n_t!} (n1n2⋯ntn)=n1!n2!⋯nt!n!
定理 3.4.2
给定正整数 n ; t ; n 1 , n 2 , ⋯ , n t n; t; n_1, n_2, \cdots, n_t n;t;n1,n2,⋯,nt,且 n 1 + n 2 + ⋯ + n t = n n_1 + n_2 + \cdots + n_t = n n1+n2+⋯+nt=n,那么
( n n 1 n 2 ⋯ n t ) = ( n − 1 ( n 1 − 1 ) n 2 ⋯ n t ) + ( n − 1 n 1 ( n 2 − 1 ) ⋯ n t ) + ⋯ + ( n − 1 n 1 n 2 ⋯ ( n t − 1 ) ) \binom{n}{n_1 n_2 \cdots n_t} = \binom{n-1}{(n_1-1) n_2 \cdots n_t} + \binom{n-1}{n_1 (n_2-1) \cdots n_t} + \cdots + \binom{n-1}{n_1 n_2 \cdots (n_t-1)} (n1n2⋯ntn)=((n1−1)n2⋯ntn−1)+(n1(n2−1)⋯ntn−1)+⋯+(n1n2⋯(nt−1)n−1)