当前位置: 首页 > news >正文

【HuggingFace Transformers】BertSelfOutput 和 BertOutput源码解析

BertSelfOutput 和 BertOutput源码解析

  • 1. 介绍
    • 1.1 共同点
      • (1) 残差连接 (Residual Connection)
      • (2) 层归一化 (Layer Normalization)
      • (3) Dropout
      • (4) 线性变换 (Linear Transformation)
    • 1.2 不同点
      • (1) 处理的输入类型
      • (2) 线性变换的作用
      • (3) 输入的特征大小
  • 2. 源码解析
    • 2.1 BertSelfOutput 源码解析
    • 2.2 BertOutput 源码解析

1. 介绍

BertSelfOutputBertOutputBERT 模型中两个相关但不同的模块。它们在功能上有许多共同点,但也有一些关键的不同点。以下通过共同点和不同点来介绍它们。

1.1 共同点

BertSelfOutputBertOutput 都包含残差连接、层归一化、Dropout 和线性变换,并且这些操作的顺序相似。

(1) 残差连接 (Residual Connection)

两个模块都应用了残差连接,即将模块的输入直接与经过线性变换后的输出相加。这种结构可以帮助缓解深层神经网络中的梯度消失问题,使信息更直接地传递,保持梯度流动顺畅。

(2) 层归一化 (Layer Normalization)

在应用残差连接后,两个模块都使用层归一化 (LayerNorm) 来规范化输出。这有助于加速训练,稳定网络性能,并减少内部分布变化的问题。

(3) Dropout

两个模块都包含一个 Dropout 层,用于随机屏蔽一部分神经元的输出,增强模型的泛化能力,防止过拟合。

(4) 线性变换 (Linear Transformation)

两个模块都包含一个线性变换 (dense 层)。这个线性变换用于调整数据的维度,并为后续的残差连接和层归一化做准备。

1.2 不同点

BertSelfOutput 专注于处理自注意力机制的输出,而 BertOutput 则处理前馈神经网络的输出。它们的输入特征维度也有所不同,线性变换的作用在两个模块中也略有差异。

(1) 处理的输入类型

  • BertSelfOutput:处理自注意力机制 (BertSelfAttention) 的输出。它关注的是如何将注意力机制生成的特征向量与原始输入结合起来。
  • BertOutput:处理的是前馈神经网络的输出。它将经过注意力机制处理后的特征进一步加工,并整合到当前层的最终输出中。

(2) 线性变换的作用

  • BertSelfOutput:线性变换的作用是对自注意力机制的输出进行进一步的变换和投影,使其适应后续的处理流程。
  • BertOutput:线性变换的作用是对前馈神经网络的输出进行变换,使其与前一层的输出相结合,并准备传递到下一层。

(3) 输入的特征大小

  • BertSelfOutput:输入和输出的特征维度保持一致,都是 BERT 模型的隐藏层大小 (hidden_size)。
  • BertOutput:输入的特征维度是中间层大小 (intermediate_size),输出则是 BERT 模型的隐藏层大小 (hidden_size)。这意味着 BertOutput 的线性变换需要将中间层的维度转换回隐藏层的维度。

2. 源码解析

源码地址:transformers/src/transformers/models/bert/modeling_bert.py

2.1 BertSelfOutput 源码解析

# -*- coding: utf-8 -*-
# @time: 2024/7/15 14:27

import torch
from torch import nn


class BertSelfOutput(nn.Module):

    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)  # 定义线性变换层,将自注意力输出映射到 hidden_size 维度
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)  # 层归一化
        self.dropout = nn.Dropout(config.hidden_dropout_prob)  # Dropout层

    def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
        hidden_states = self.dense(hidden_states)  # 对自注意力机制的输出进行线性变换
        hidden_states = self.dropout(hidden_states)  # Dropout操作
        hidden_states = self.LayerNorm(hidden_states + input_tensor)  # 残差连接后进行层归一化
        return hidden_states

2.2 BertOutput 源码解析

# -*- coding: utf-8 -*-
# @time: 2024/8/22 15:41

import torch
from torch import nn


class BertOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)  # 定义线性变换层,将前馈神经网络输出从 intermediate_size 映射到 hidden_size
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)  # 层归一化
        self.dropout = nn.Dropout(config.hidden_dropout_prob)  # Dropout层

    def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
        hidden_states = self.dense(hidden_states)  # 对前馈神经网络的输出进行线性变换
        hidden_states = self.dropout(hidden_states)  # Dropout操作
        hidden_states = self.LayerNorm(hidden_states + input_tensor)  # 残差连接后进行层归一化
        return hidden_states

相关文章:

  • 如何在路由器中抓包分析
  • 纯原生-如何在不破解情况下使用Android监听支付宝微信收款消息
  • JavaScript中DOW和BOW;笔记分享;知识回顾
  • 欧科云链: Web3浪潮下合规是“必选项”, 技术创新成发展重点
  • 手把手教你用jmeter做压力测试(详图)
  • 夜深了,赶紧根据软件系统建模建设一个房屋租赁服务系统,坐上收租大佬宝座,走上人生巅峰
  • 【React】Redux-toolkit 处理异步操作
  • leetcode 41.缺失的第一个正数
  • 58.以太网数据回环实验(1)理论知识
  • C++指南-标准库,数学库,数据结构
  • 参数校验学习笔记
  • 快充协议方案 TYPE-C口取电支持PD5V、 9V、 12V、 15V、 20V
  • Unity3D DOTS中ECS核心架构详解
  • Windows上安装 nodejs,npm 和 yarn详细教程
  • 玩转云服务:Oracle Cloud甲骨文永久免费云主机配置指南(续)
  • python基础(13魔法方法介绍)
  • 江协科技STM32学习- P7 GPIO输入
  • 打造 LLMOps 时代 Prompt 数据驱动引擎
  • Java、python、php版 美发美甲预约服务平台 美容院管理系统(源码、调试、LW、开题、PPT)
  • Python相关系数导图
  • 内蒙古公开宣判144件毁林毁草刑案,单起非法占用林地逾250亩
  • 李铁案二审今日宣判
  • 160名老人报旅行团被扔服务区?张家界官方通报
  • 王沪宁主持召开全国政协主席会议
  • 油电同智,安全超充!从上海车展看中国汽车产业先发优势
  • 媒体:每一个“被偷走的人生”,都该得到公道和正义