频域插值重构——频率采样FIR数字滤波器设计法的理论基础
频域插值重构
频域插值重构与时域插值重构的基本思路是一致的,利用有限个采样值来重构之前的连续函数。频域插值重构,通过采样插值公式,由 N N N个频域采样值 X N ( k ) X_N(k) XN(k)来重构出连续频率函数,如果频域采样过程满足频域采样定理要求,可以无失真地重构出采样前的 X ( e j ω ) X({\rm e}^{{\rm j}\omega}) X(ejω)或 X ( z ) X(z) X(z)。
可由 z z z变换的计算过程推导频域样本值 X N ( k ) X_N(k) XN(k)与 X ( z ) X(z) X(z)的关系。
X ( z ) = ∑ n = 0 N − 1 x ( n ) z − n = ∑ n = 0 N − 1 [ 1 N ∑ k = 0 N − 1 X N ( k ) e j 2 π N n k ] z − n X(z) = \sum_{n=0}^{N-1} x(n) z^{-n} = \sum_{n=0}^{N-1} \left[ \frac{1}{N} \sum_{k=0}^{N-1} X_N(k) {\rm e}^{{\rm j} \frac{2\pi}{N} nk} \right] z^{-n} X(z)=n=0∑N−1x(n)z−n=n=0∑N−1[N1k=0∑N−1XN(k)ejN2πnk]z−n
= 1 N ∑ k = 0 N − 1 X N ( k ) [ ∑ n = 0 N − 1 e j 2 π N n k z − n ] = \frac{1}{N} \sum_{k=0}^{N-1} X_N(k) \left[ \sum_{n=0}^{N-1} {\rm e}^{{\rm j} \frac{2\pi}{N} nk} z^{-n} \right] =N1k=0∑N−1XN(k)[n=0∑N−1ejN2πnkz−n]
= 1 N ∑ k = 0 N − 1 X N ( k ) 1 − z − N 1 − e j 2 π N k z − 1 = \frac{1}{N} \sum_{k=0}^{N-1} X_N(k) \frac{1 - z^{-N}}{1 - {\rm e}^{{\rm j} \frac{2\pi}{N} k} z^{-1}} =N1k=0∑N−1XN(k)1−ejN2πkz−11−z−N
将上式整理可得,
X ( z ) = ∑ k = 0 N − 1 X N ( k ) Φ k ( z ) X(z) = \sum_{k=0}^{N-1} X_N(k) \Phi_k(z) X(z)=k=0∑N−1XN(k)Φk(z)
其中,把 Φ k ( z ) \Phi_k(z) Φk(z)称为插值函数,
Φ k ( z ) = 1 N ⋅ 1 − z − N 1 − e j 2 π N k z − 1 \Phi_k(z) = \frac{1}{N} \cdot \frac{1 - z^{-N}}{1 - {\rm e}^{{\rm j} \frac{2\pi}{N} k} z^{-1}} Φk(z)=N1⋅1−ejN2πkz−11−z−N
代入 z = e j ω z = {\rm e}^{{\rm j}\omega} z=ejω,可得 X N ( k ) X_N(k) XN(k)与 X ( e j ω ) X({\rm e}^{{\rm j}\omega}) X(ejω)的关系。
X ( e j ω ) = ∑ k = 0 N − 1 X N ( k ) Φ k ( e j ω ) X({\rm e}^{{\rm j}\omega}) = \sum_{k=0}^{N-1} X_N(k) \Phi_k({\rm e}^{{\rm j}\omega}) X(ejω)=k=0∑N−1XN(k)Φk(ejω)
此时插值函数为 Φ k ( e j ω ) \Phi_k({\rm e}^{{\rm j}\omega}) Φk(ejω)
Φ k ( e j ω ) = 1 N ⋅ 1 − e − j ω N 1 − e − j ( ω − 2 π k N ) \Phi_k({\rm e}^{{\rm j}\omega}) = \frac{1}{N} \cdot \frac{1 - {\rm e}^{-{\rm j}\omega N}}{1 - {\rm e}^{-{\rm j}(\omega - \frac{2\pi k}{N})}} Φk(ejω)=N1⋅1−e−j(ω−N2πk)1−e−jωN
根据欧拉公式可得
Φ k ( e j ω ) = 1 N sin ( N ω / 2 ) sin [ ( ω − 2 π k / N ) / 2 ] e − j [ ω ( N − 1 ) / 2 + k π / N ] \Phi_k({\rm e}^{{\rm j}\omega}) = \frac{1}{N} \frac{\sin(N\omega/2)}{\sin[(\omega - 2\pi k/N)/2]} {\rm e}^{-{\rm j}[\omega(N-1)/2 + k\pi/N]} Φk(ejω)=N1sin[(ω−2πk/N)/2]sin(Nω/2)e−j[ω(N−1)/2+kπ/N]
= 1 N sin [ N ( ω / 2 − k π / N ) ] sin ( ω / 2 − k π / N ) e j k π ( N − 1 ) / N e − j ( N − 1 ) ω / 2 = \frac{1}{N} \frac{\sin[N(\omega/2 - k\pi/N)]}{\sin(\omega/2 - k\pi/N)} {\rm e}^{{\rm j}k\pi(N-1)/N} {\rm e}^{-{\rm j}(N-1)\omega/2} =N1sin(ω/2−kπ/N)sin[N(ω/2−kπ/N)]ejkπ(N−1)/Ne−j(N−1)ω/2
令 Φ ( ω ) = 1 N sin ( ω N / 2 ) sin ( ω / 2 ) e − j ( N − 1 ) ω / 2 \Phi(\omega) = \frac{1}{N} \frac{\sin(\omega N/2)}{\sin(\omega/2)} {\rm e}^{-{\rm j}(N-1)\omega/2} Φ(ω)=N1sin(ω/2)sin(ωN/2)e−j(N−1)ω/2,可以进一步化简插值函数为
Φ k ( e j ω ) = Φ ( ω − k 2 π N ) \Phi_k({\rm e}^{{\rm j}\omega}) = \Phi\left(\omega - k \frac{2\pi}{N}\right) Φk(ejω)=Φ(ω−kN2π)
故由频域样本值 X N ( k ) X_N(k) XN(k)插值重构 X ( e j ω ) X({\rm e}^{{\rm j}\omega}) X(ejω)的公式为
X ( e j ω ) = ∑ k = 0 N − 1 X N ( k ) Φ ( ω − k 2 π N ) X({\rm e}^{{\rm j}\omega}) = \sum_{k=0}^{N-1} X_N(k) \Phi\left(\omega - k \frac{2\pi}{N}\right) X(ejω)=k=0∑N−1XN(k)Φ(ω−kN2π)
可以看出,频域插值重构的过程与时域插值重构的过程相似,可对照时域插值重构过程。 X ( e j ω ) X({\rm e}^{{\rm j}\omega}) X(ejω)是由频域样本值 X N ( k ) X_N(k) XN(k)对各个频率采样点的插值函数 Φ ( ω − k 2 π N ) \Phi\left(\omega - k \frac{2\pi}{N}\right) Φ(ω−kN2π)加权后求和得到。在每个频率采样点 ω = 2 π k / N \omega = 2\pi k / N ω=2πk/N上,插值函数取值为 1,保证了输出结果在各个频率采样点取值与采样值完全相等,即 X ( e j ω ) ∣ ω = 2 π k / N = X N ( k ) X({\rm e}^{{\rm j}\omega})|_{\omega = 2\pi k / N} = X_N(k) X(ejω)∣ω=2πk/N=XN(k)。在频率采样点之间,输出结果的波形由各插值函数波形叠加而成。