代码随想录-动态规划18
leetcode-509-斐波那契数
int fib(int n) {
if(n <= 1)
return n;
int* dp = (int*)malloc(sizeof(int)*(n+1));
dp[0] = 0, dp[1] = 1;
for(int i = 2 ; i <= n ; i++){
dp[i] = dp[i-1] + dp[i-2];
}
return dp[n];
}
leetcode-70-爬楼梯
爬到n层台阶,需要从n-1层和n-2层推到而来
n-1层爬一步到n层
n-2层爬两步到n层
int climbStairs(int n) {
if(n <= 2)
return n;
int* dp = (int*)malloc(sizeof(int)*(n+1));
dp[0] = 0, dp[1] = 1, dp[2] = 2;
for(int i = 3 ; i <= n ; i++){
dp[i] = dp[i-1] + dp[i-2];
}
return dp[n];
}
leetcode-746-使用最小花费爬楼梯
从dp[i - 1]跳还是从dp[i - 2]跳
一定是选最小的,所以dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
int minCostClimbingStairs(int* cost, int costSize) {
int* dp = (int*)malloc(sizeof(int)*(costSize+1));
dp[0] = 0, dp[1] = 0;
for(int i = 2 ; i <= costSize ; i++){
dp[i] = fmin(dp[i-1] + cost[i-1] , dp[i-2] + cost[i-2]);
}
return dp[costSize];
}
leetcode-62-不同路径
1.dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。
2.想要求dp[i][j],只能有两个方向来推导出来,即dp[i - 1][j] 和 dp[i][j - 1]。
dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
3.
for (int i = 0; i < m; i++) dp[i][0] = 1; for (int j = 0; j < n; j++) dp[0][j] = 1;
int uniquePaths(int m, int n) {
int** dp = (int**)malloc(sizeof(int*)*m);
for(int i = 0 ; i < m ; i++){
dp[i] = (int*)malloc(sizeof(int)*n);
memset(dp[i],0,n);
}
for(int i = 0 ; i < m ; i++){
dp[i][0] = 1;
}
for(int j = 0 ; j < n ; j++){
dp[0][j] = 1;
}
for(int i = 1 ; i < m ; i++){
for(int j = 1 ; j < n ; j++){
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
return dp[m-1][n-1];
}
leetcode-63-不同路径II
注意初始化条件改变
for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) dp[i][0] = 1; for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) dp[0][j] = 1;
int uniquePathsWithObstacles(int** obstacleGrid, int obstacleGridSize, int* obstacleGridColSize) {
int m = obstacleGridSize;
int n = obstacleGridColSize[0];
int** dp = (int**)malloc(sizeof(int*)*m);
for(int i = 0 ; i < m; i++){
dp[i] = (int*)malloc(sizeof(int)*n);
}
for(int i = 0 ; i < m ; i++){
for(int j = 0 ; j < n ; j++){
dp[i][j] = 0;
}
}
for(int i = 0 ; i < m ; i++){
if(obstacleGrid[i][0] == 0){
dp[i][0] = 1;
}else{
break;
}
}
for(int j = 0 ; j < n ; j++){
if(obstacleGrid[0][j] == 0){
dp[0][j] = 1;
}else{
break;
}
}
for(int i = 1 ; i < m ; i++){
for(int j = 1 ; j < n ; j++){
if(obstacleGrid[i][j] == 0){
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}else{
dp[i][j] = 0;
}
}
}
return dp[m-1][n-1];
}