当前位置: 首页 > news >正文

Time spent invoking a CUDA kernel

The time spent invoking a CUDA kernel (i.e., launching it) is typically very small—on the order of microseconds (µs)—but depends on several factors:

Factors Affecting Kernel Launch Time:

  1. Driver Overhead:

    • The CUDA driver must perform checks, set up kernel parameters, and schedule the kernel on the GPU.
    • This usually takes 5–50 µs on modern systems.
  2. Kernel Configuration:

    • The number of thread blocks and grid dimensions can slightly affect launch overhead, but the impact is usually minimal.
  3. Synchronization:

    • By default, kernel launches are asynchronous (the CPU continues execution without waiting).
    • If you explicitly synchronize (e.g., with cudaDeviceSynchronize()), the total time includes kernel execution, not just launch overhead.
  4. CUDA Context Initialization:

    • The first kernel launch in a program may take longer (up to 100–500 ms) due to CUDA context setup.
    • Subsequent launches are much faster.
  5. Hardware & CUDA Version:

    • Newer GPUs and CUDA versions tend to have lower launch overhead.

How to Measure Kernel Launch Time:

You can use CUDA events to measure the launch time:

cudaEvent_t start, stop;
cudaEventCreate(&start);
cudaEventCreate(&stop);

cudaEventRecord(start);
myKernel<<<grid, block>>>(...); // Kernel launch
cudaEventRecord(stop);

cudaEventSynchronize(stop);
float milliseconds = 0;
cudaEventElapsedTime(&milliseconds, start, stop);

printf("Kernel launch time: %f µs\n", milliseconds * 1000);

(Note: This measures launch + minimal GPU execution; pure launch overhead is hard to isolate.)

Summary:

  • Typical kernel launch time: ~5–50 µs (after context setup).
  • First launch in a program: Much slower (~100–500 ms) due to CUDA initialization.
  • Kernel execution time: Separate from launch time (depends on the kernel’s workload).

If you need ultra-low-latency launches, consider:

  • Avoiding frequent small kernel launches (use larger kernels or dynamic parallelism).
  • Using CUDA Graphs to reduce launch overhead for repetitive workloads.

Would you like help optimizing a specific scenario?

http://www.dtcms.com/a/104452.html

相关文章:

  • 【Linux】系统文件的权限管理
  • open3d教程 (二)点云的读写
  • 常用天然地震链接
  • 【JAVA】十、基础知识“类和对象”干货分享~(一)
  • 香港理工视觉语言模型赋能智能制造最新综述!基于视觉语言模型的人机协作在智能制造中的应用
  • secure keyboard entry is enabled because another app has turned it on.
  • 阿里通义千问发布全模态开源大模型Qwen2.5-Omni-7B
  • 鸿蒙阔折叠Pura X外屏开发适配
  • MySQL的备份及还原
  • C++多线程的性能优化
  • 怎样配置windows云主机不关闭显示器
  • 小程序中跨页面组件共享数据的实现方法与对比
  • platform总线驱动简单示例
  • 探索新一代大模型代理(LLM agent)及其架构
  • AI Agent创新10大前沿方向与落地实践分析
  • 如何使用CUDA Graphs,如何更新Graphs中kernel函数参数
  • 利用 Chrome devTools Source Override 实现JS逆向破解案例
  • 矿山边坡监测预警系统设计
  • Qt | 电脑音频采集曲线Charts
  • 限制 某个容器服务的内存使用
  • Keepalived+LVS+nginx高可用架构
  • 后端开发 SpringBoot 工程模板
  • 【蓝桥杯】第十五届C++B组省赛
  • 【3. 软件工程】3.1 软件过程模型
  • 数字货币交易所开发中的常见问题与解决方案
  • python实现代码雨
  • springboot 对接马来西亚数据源API等多个国家的数据源
  • 向量库(Vector Database)概述
  • 基于PyQt5的自动化任务管理软件:高效、智能的任务调度与执行管理
  • 5G-A技术