当前位置: 首页 > news >正文

self Attention为何除以根号dk?(全新角度)

全网最独特解析:self Attention为何除根号dk?

一、假设条件:查询向量和键向量服从正态分布

假设查询向量 q i q_i qi和键向量 k j k_j kj的每个分量均为独立同分布的随机变量,且服从标准正态分布,即:
q i ( m ) , k j ( m ) ∼ N ( 0 , 1 ) ( m = 1 , 2 , … , d k ) q_i^{(m)}, k_j^{(m)} \sim \mathcal{N}(0,1) \quad (m=1,2,\dots,d_k) qi(m),kj(m)N(0,1)(m=1,2,,dk)
此时,每个分量的均值为0,方差为1。


二、点积的统计特性分析

查询向量 q i q_i qi和键向量 k j k_j kj的点积为:
q i ⋅ k j = ∑ m = 1 d k q i ( m ) k j ( m ) q_i \cdot k_j = \sum_{m=1}^{d_k} q_i^{(m)} k_j^{(m)} qikj=m=1dkqi(m)kj(m)
根据独立随机变量和的方差性质,点积的方差为:
Var ( q i ⋅ k j ) = ∑ m = 1 d k Var ( q i ( m ) k j ( m ) ) \text{Var}(q_i \cdot k_j) = \sum_{m=1}^{d_k} \text{Var}(q_i^{(m)} k_j^{(m)}) Var(qikj)=m=1dkVar(qi(m)kj(m))
由于 q i ( m ) q_i^{(m)} qi(m) k j ( m ) k_j^{(m)} kj(m)独立且均服从 N ( 0 , 1 ) \mathcal{N}(0,1) N(0,1),乘积的方差为:
Var ( q i ( m ) k j ( m ) ) = Var ( q i ( m ) ) ⋅ Var ( k j ( m ) ) + [ E ( q i ( m ) ) ] 2 ⋅ Var ( k j ( m ) ) + [ E ( k j ( m ) ) ] 2 ⋅ Var ( q i ( m ) ) = 1 \text{Var}(q_i^{(m)} k_j^{(m)}) = \text{Var}(q_i^{(m)}) \cdot \text{Var}(k_j^{(m)}) + [E(q_i^{(m)})]^2 \cdot \text{Var}(k_j^{(m)}) + [E(k_j^{(m)})]^2 \cdot \text{Var}(q_i^{(m)}) = 1 Var(qi(m)kj(m))=Var(qi(m))Var(kj(m))+[E(qi(m))]2Var(kj(m))+[E(kj(m))]2Var(qi(m))=1
因此,点积的方差为 d k d_k dk,标准差为 d k \sqrt{d_k} dk


三、缩放的必要性:Softmax的输入敏感性

Softmax函数对输入值的量级极其敏感:

  1. 数值溢出问题:若点积的绝对值随 d k d_k dk增大而显著增大(例如 d k = 64 d_k=64 dk=64时标准差为8),输入Softmax的值可能超出浮点数表示范围。
  2. 梯度消失问题:当某些点积值远大于其他值时,Softmax输出接近独热分布(Hard Attention),导致梯度趋近于零,阻碍参数更新。
  3. 分布退化问题:未经缩放的输入会使注意力权重集中在极少数位置,失去“软性关注”的优势。

四、除以 d k \sqrt{d_k} dk 的数学解释

通过将点积除以 d k \sqrt{d_k} dk ,可以将点积的标准差从 d k \sqrt{d_k} dk 缩放至1,即:
Var ( q i ⋅ k j d k ) = Var ( q i ⋅ k j ) d k = 1 \text{Var}\left( \frac{q_i \cdot k_j}{\sqrt{d_k}} \right) = \frac{\text{Var}(q_i \cdot k_j)}{d_k} = 1 Var(dk qikj)=dkVar(qikj)=1
此时,点积的分布被标准化 N ( 0 , 1 ) \mathcal{N}(0,1) N(0,1),实现了以下效果:

  1. 数值稳定性:Softmax输入的均值为0、方差为1,避免极端值。
  2. 梯度均衡性:Softmax输出的概率分布更平缓,梯度更新更稳定。
  3. 模型鲁棒性:注意力权重在多位置间合理分配,保留软性关注能力。

五、为何不是其他缩放因子?

若采用其他缩放因子(如 d k d_k dk 2 d k 2\sqrt{d_k} 2dk ):
除以 d k d_k dk:方差将缩小为 1 / d k 1/d_k 1/dk,导致Softmax输入过小,注意力权重趋于均匀分布,失去区分性。
除以 2 d k 2\sqrt{d_k} 2dk :方差将缩小为 1 / 4 1/4 1/4,输入量级过小,同样影响注意力权重的有效性。


总结

从正态分布的角度看,除以 d k \sqrt{d_k} dk 的本质是通过方差归一化,将点积的统计特性控制在合理范围内

相关文章:

  • 【入门初级篇】布局类组件的使用(2)
  • IRF拆除
  • android facebook 分享到 messenger
  • XSS跨站脚本攻击漏洞(Cross Site Scripting)
  • Java 的 正则表达式
  • 网络爬虫【爬虫库request】
  • QT编程之数据库开发
  • Mysql的安装配置
  • 数据结构——顺序栈seq_stack
  • MySQL事务日志详解:Redo Log 和 Undo Log 的核心机制
  • 【大模型理论篇】CogVLM:多模态预训练语言模型
  • 详细说明脚本评估和耗时较长的任务
  • npm报错‘proxy‘ config is set properxy. See: ‘npm help config‘
  • 【负载均衡系列】HAProxy
  • 蓝桥杯 第十天 :2022 国赛 第 2 题 排列距离/康托定理
  • 20242817李臻《Linux⾼级编程实践》第四周
  • 使用 Python 实现时间序列预测:电力负载需求预测
  • SpringCloud负载均衡:Ribbon核心组件与策略配置
  • 【C++】:异常
  • 如何优化 React 应用性能?
  • 牧原股份子公司与养殖户种猪买卖纠纷案一审胜诉
  • 白玉兰奖征片综述丨综艺市场破局焕新,多元赛道重塑价值坐标
  • 媒体和打拐志愿者暗访长沙一地下代孕实验室,警方已控制涉案人员
  • 邯郸一酒店办婚宴发生火灾,新郎母亲:饭没吃成酒店还要收费
  • 黑灰产工作室为境外诈骗集团养号引流,冒充美女与男性裸聊后敲诈勒索
  • 第四轮伊美核谈判将于11日在阿曼举行