4.1 uboot启动第一阶段
1、初始Bootloader
Bootloader是启动计算机或嵌入式系统时执行的第一个程序,它主要负责初始化系统硬件,加载操作系统。U-Boot也是Bootloader的一种。它的作用如下:
(1)初始化硬件
(2)部署操作系统
(3)启动操作系统
(4)提供启动选项
(5)提供固件升级机制
2、U-Boot源码目录
目录名 | 作用 |
api | |
board | 开发板的相关定义和结构 |
common | 包含U-Boot用到的各种处理函数 |
cpu | 各种不同类型的处理器相关的代码 |
doc | U-Boot相关文档 |
drivers | 常用外部设备的驱动 |
fs | 文件系统(cramfs、ext2、fat、fdos、jffs2、reserfs) |
include | U-Boot用到的头文件 |
lib_arm | ARM体系结构有关的数据定义和操作 |
lib_generic | U-Boot通用的操作函数 |
libfdt | 设备树相关的 |
net | 常用的网络协议,包括:bootp、rarp、arp、tftp |
post | 上电自检相关 |
tools | 工具类相关的 |
3、U-Boot启动的第一阶段
U-Boot的工作流程分成stage1和stage2两个阶段。
3.1 头部16字节
SD卡/Nand等方式启动需要16字节的校验头,USB启动就不需要16字节的校验头,这里是先留出16字节的大小,用于后面计算校验时填充。
#if defined(CONFIG_EVT1) && !defined(CONFIG_FUSED)
.word 0x2000
.word 0x0
.word 0x0
.word 0x0
#endif
3.2 设置异常向量表
.globl _start
_start: b reset
ldr pc, _undefined_instruction
ldr pc, _software_interrupt
ldr pc, _prefetch_abort
ldr pc, _data_abort
ldr pc, _not_used
ldr pc, _irq
ldr pc, _fiq
_undefined_instruction:
.word undefined_instruction
_software_interrupt:
.word software_interrupt
_prefetch_abort:
.word prefetch_abort
_data_abort:
.word data_abort
_not_used:
.word not_used
_irq:
.word irq
_fiq:
.word fiq
_pad:
.word 0x12345678 /* now 16*4=64 */
异常复位时跳转到reset
3.3 地址对齐
以当前地址开始,以16字节对齐
.global _end_vect
_end_vect:
.balignl 16,0xdeadbeef
.balignl {alignment} {,fill} {,max}。
;alignment为正整数,以alignment整数倍地址进行对齐,以当前地址为起始地址,进行字节填充,用fill进行填充
3.4 两个地址
/* 定义在Makefile,是uboot链接时的链接地址 */
_TEXT_BASE:
.word TEXT_BASE
/* uboot在DDR的物理地址 */
_TEXT_PHY_BASE:
.word CFG_PHY_UBOOT_BASE
3.5 cpu设置为SVC模式
reset:
/*
* set the cpu to SVC32 mode and IRQ & FIQ disable
*/
@;mrs r0,cpsr
@;bic r0,r0,#0x1f
@;orr r0,r0,#0xd3
@;msr cpsr,r0
msr cpsr_c, #0xd3 @ I & F disable, Mode: 0x13 - SVC
3.6 cpu_init_crit
(1)设置L1Cache、L2Cache、MMU
#ifndef CONFIG_EVT1
#if 0
bl v7_flush_dcache_all
#else
bl disable_l2cache
mov r0, #0x0 @
mov r1, #0x0 @ i
mov r3, #0x0
mov r4, #0x0
lp1:
mov r2, #0x0 @ j
lp2:
mov r3, r1, LSL #29 @ r3 = r1(i) <<29
mov r4, r2, LSL #6 @ r4 = r2(j) <<6
orr r4, r4, #0x2 @ r3 = (i<<29)|(j<<6)|(1<<1)
orr r3, r3, r4
mov r0, r3 @ r0 = r3
bl CoInvalidateDCacheIndex
add r2, #0x1 @ r2(j)++
cmp r2, #1024 @ r2 < 1024
bne lp2 @ jump to lp2
add r1, #0x1 @ r1(i)++
cmp r1, #8 @ r1(i) < 8
bne lp1 @ jump to lp1
bl set_l2cache_auxctrl
bl enable_l2cache
#endif
#endif
bl disable_l2cache
bl set_l2cache_auxctrl_cycle
bl enable_l2cache
/*
* Invalidate L1 I/D
*/
mov r0, #0 @ set up for MCR
mcr p15, 0, r0, c8, c7, 0 @ invalidate TLBs
mcr p15, 0, r0, c7, c5, 0 @ invalidate icache
/*
* disable MMU stuff and caches
*/
mrc p15, 0, r0, c1, c0, 0
bic r0, r0, #0x00002000 @ clear bits 13 (--V-)
bic r0, r0, #0x00000007 @ clear bits 2:0 (-CAM)
orr r0, r0, #0x00000002 @ set bit 1 (--A-) Align
orr r0, r0, #0x00000800 @ set bit 12 (Z---) BTB
mcr p15, 0, r0, c1, c0, 0
(2)识别启动介质
/* Read booting information */
ldr r0, =PRO_ID_BASE
ldr r1, [r0,#OMR_OFFSET]
bic r2, r1, #0xffffffc1
(3)在sram中设置栈
ldr sp, =0xd0036000 /* end of sram dedicated to u-boot */
sub sp, sp, #12 /* set stack */
mov fp, #0
/* 设置栈之后跳转到lowlevel_init */
bl lowlevel_init /* go setup pll,mux,memory */
3.7 lowlevel_init
(1)检查复位状态,cpu有多种复位状态,如冷上电、热启动、睡眠,冷上电时需要重新初始化DDR
(2)IO状态恢复:恢复睡眠前IO的值
(3)关看门狗
(4)SRAM和SROM初始化
(5)供电锁存
(6)判断代码运行位置,如果运行在RAM中,就不需要进行重定位
(7)初始化系统时钟
(8)初始化DDR
(9)初始化串口
(10)pop {pc}:函数调用返回
.globl lowlevel_init
lowlevel_init:
push {lr}
/* check reset status */
ldr r0, =(ELFIN_CLOCK_POWER_BASE+RST_STAT_OFFSET)
ldr r1, [r0]
bic r1, r1, #0xfff6ffff
cmp r1, #0x10000
beq wakeup_reset_pre
cmp r1, #0x80000
beq wakeup_reset_from_didle
/* IO Retention release */
ldr r0, =(ELFIN_CLOCK_POWER_BASE + OTHERS_OFFSET)
ldr r1, [r0]
ldr r2, =IO_RET_REL
orr r1, r1, r2
str r1, [r0]
/* Disable Watchdog */
ldr r0, =ELFIN_WATCHDOG_BASE /* 0xE2700000 */
mov r1, #0
str r1, [r0]
/* SRAM(2MB) init for SMDKC110 */
/* GPJ1 SROM_ADDR_16to21 */
ldr r0, =ELFIN_GPIO_BASE
ldr r1, [r0, #GPJ1CON_OFFSET]
bic r1, r1, #0xFFFFFF
ldr r2, =0x444444
orr r1, r1, r2
str r1, [r0, #GPJ1CON_OFFSET]
ldr r1, [r0, #GPJ1PUD_OFFSET]
ldr r2, =0x3ff
bic r1, r1, r2
str r1, [r0, #GPJ1PUD_OFFSET]
/* GPJ4 SROM_ADDR_16to21 */
ldr r1, [r0, #GPJ4CON_OFFSET]
bic r1, r1, #(0xf<<16)
ldr r2, =(0x4<<16)
orr r1, r1, r2
str r1, [r0, #GPJ4CON_OFFSET]
ldr r1, [r0, #GPJ4PUD_OFFSET]
ldr r2, =(0x3<<8)
bic r1, r1, r2
str r1, [r0, #GPJ4PUD_OFFSET]
/* CS0 - 16bit sram, enable nBE, Byte base address */
ldr r0, =ELFIN_SROM_BASE /* 0xE8000000 */
mov r1, #0x1
str r1, [r0]
/* PS_HOLD pin(GPH0_0) set to high */
ldr r0, =(ELFIN_CLOCK_POWER_BASE + PS_HOLD_CONTROL_OFFSET)
ldr r1, [r0]
orr r1, r1, #0x300
orr r1, r1, #0x1
str r1, [r0]
/* when we already run in ram, we don't need to relocate U-Boot.
* and actually, memory controller must be configured before U-Boot
* is running in ram.
*/
ldr r0, =0xff000fff
bic r1, pc, r0 /* r0 <- current base addr of code */
ldr r2, _TEXT_BASE /* r1 <- original base addr in ram */
bic r2, r2, r0 /* r0 <- current base addr of code */
cmp r1, r2 /* compare r0, r1 */
beq 1f /* r0 == r1 then skip sdram init */
/* init system clock */
bl system_clock_init
/* Memory initialize */
bl mem_ctrl_asm_init
1:
/* for UART */
bl uart_asm_init
bl tzpc_init
#if defined(CONFIG_ONENAND)
bl onenandcon_init
#endif
#if defined(CONFIG_NAND)
/* simple init for NAND */
bl nand_asm_init
#endif
/* check reset status */
ldr r0, =(ELFIN_CLOCK_POWER_BASE+RST_STAT_OFFSET)
ldr r1, [r0]
bic r1, r1, #0xfffeffff
cmp r1, #0x10000
beq wakeup_reset_pre
/* ABB disable */
ldr r0, =0xE010C300
orr r1, r1, #(0x1<<23)
str r1, [r0]
/* Print 'K' */
ldr r0, =ELFIN_UART_CONSOLE_BASE
ldr r1, =0x4b4b4b4b
str r1, [r0, #UTXH_OFFSET]
pop {pc}
3.8 在DDR中设置栈
ldr r0, =0xE010E81C /* PS_HOLD_CONTROL register */
ldr r1, =0x00005301 /* PS_HOLD output high */
str r1, [r0]
/* get ready to call C functions */
ldr sp, _TEXT_PHY_BASE /* setup temp stack pointer */
sub sp, sp, #12
mov fp, #0 /* no previous frame, so fp=0 */
3.9 再次判断是否需要进行重定位
/* when we already run in ram, we don't need to relocate U-Boot.
* and actually, memory controller must be configured before U-Boot
* is running in ram.
*/
ldr r0, =0xff000fff
bic r1, pc, r0 /* r0 <- current base addr of code */
ldr r2, _TEXT_BASE /* r1 <- original base addr in ram */
bic r2, r2, r0 /* r0 <- current base addr of code */
cmp r1, r2 /* compare r0, r1 */
beq after_copy /* r0 == r1 then skip flash copy */
重定位代码
#if defined(CONFIG_EVT1)
/* If BL1 was copied from SD/MMC CH2 */
ldr r0, =0xD0037488
ldr r1, [r0]
ldr r2, =0xEB200000
cmp r1, r2
beq mmcsd_boot
#endif
ldr r0, =INF_REG_BASE
ldr r1, [r0, #INF_REG3_OFFSET]
cmp r1, #BOOT_NAND /* 0x0 => boot device is nand */
beq nand_boot
cmp r1, #BOOT_ONENAND /* 0x1 => boot device is onenand */
beq onenand_boot
cmp r1, #BOOT_MMCSD
beq mmcsd_boot
cmp r1, #BOOT_NOR
beq nor_boot
cmp r1, #BOOT_SEC_DEV
beq mmcsd_boot
nand_boot:
mov r0, #0x1000
bl copy_from_nand
b after_copy
onenand_boot:
bl onenand_bl2_copy
b after_copy
mmcsd_boot:
#if DELETE
ldr sp, _TEXT_PHY_BASE
sub sp, sp, #12
mov fp, #0
#endif
bl movi_bl2_copy
b after_copy
nor_boot:
bl read_hword
b after_copy
after_copy:
#if defined(CONFIG_ENABLE_MMU)
enable_mmu:
/* enable domain access */
ldr r5, =0x0000ffff
mcr p15, 0, r5, c3, c0, 0 @load domain access register
/* Set the TTB register */
ldr r0, _mmu_table_base
ldr r1, =CFG_PHY_UBOOT_BASE
ldr r2, =0xfff00000
bic r0, r0, r2
orr r1, r0, r1
mcr p15, 0, r1, c2, c0, 0
/* Enable the MMU */
mmu_on:
mrc p15, 0, r0, c1, c0, 0
orr r0, r0, #1
mcr p15, 0, r0, c1, c0, 0
nop
nop
nop
nop
#endif
3.10 再次在DDR中设置栈
skip_hw_init:
/* Set up the stack */
stack_setup:
#if defined(CONFIG_MEMORY_UPPER_CODE)
ldr sp, =(CFG_UBOOT_BASE + CFG_UBOOT_SIZE - 0x1000)
#else
ldr r0, _TEXT_BASE /* upper 128 KiB: relocated uboot */
sub r0, r0, #CFG_MALLOC_LEN /* malloc area */
sub r0, r0, #CFG_GBL_DATA_SIZE /* bdinfo */
#if defined(CONFIG_USE_IRQ)
sub r0, r0, #(CONFIG_STACKSIZE_IRQ+CONFIG_STACKSIZE_FIQ)
#endif
sub sp, r0, #12 /* leave 3 words for abort-stack */
#endif
3.11 清理bss段,并跳转到uboot启动第二阶段_start_armboot
clear_bss:
ldr r0, _bss_start /* find start of bss segment */
ldr r1, _bss_end /* stop here */
mov r2, #0x00000000 /* clear */
clbss_l:
str r2, [r0] /* clear loop... */
add r0, r0, #4
cmp r0, r1
ble clbss_l
ldr pc, _start_armboot