当前位置: 首页 > news >正文

SQL语言学习(group by,having)

GROUP BY 的基本用法

GROUP BY 子句用于将结果集按照一个或多个列进行分组,通常与聚合函数(如 COUNT, SUM, AVG 等)一起使用。

实例:

按照部分分组统计员工数量:

select department,count(*) as employee_count
from employees
group by department;

按产品和年份分组统计销售额:

select product_id,YEAR(order_date) as order_year,SUM(amount) as total_sales
from orders
group by product_id,YEAR(order_date);

HAVING 的基本用法

HAVING 子句用于对 GROUP BY 分组后的结果进行过滤,类似于 WHERE 子句,但 WHERE 在分组前过滤,而 HAVING 在分组后过滤。

//筛选员工数超过5人的部门
select department,count(*) as employee_count
from employees
group by department
having count(*)>5
//筛选出销售总额超过10000的产品和年份组成
select product_id,year(order_date) as order_year,sum(amount) astotal_sales
from orders
group by product_id,year(order_date)
having sum(amount)>10000;

 关键区别总结:

 

常见使用模式

1. 基本分组统计

SELECT category, AVG(price) as avg_price
FROM products
GROUP BY category;

2. 分组后过滤

SELECT customer_id, COUNT(*) as order_count
FROM orders
GROUP BY customer_id
HAVING COUNT(*) >= 3;

3. 多列分组

SELECT department, job_title, COUNT(*) as count
FROM employees
GROUP BY department, job_title
HAVING COUNT(*) > 2;

4. 结合 WHERE 和 HAVING

-- 先过滤2023年的订单,再按客户分组,最后筛选总金额大于5000的客户
SELECT customer_id, SUM(amount) as total_spent
FROM orders
WHERE order_date BETWEEN '2023-01-01' AND '2023-12-31'
GROUP BY customer_id
HAVING SUM(amount) > 5000;

注意事项

  1. SELECT 中的非聚合列:在 GROUP BY 查询中,SELECT 子句中的非聚合列必须出现在 GROUP BY 子句中。

  2. 性能考虑:GROUP BY 操作可能会消耗较多资源,特别是在大数据集上。

  3. HAVING 中的聚合函数:HAVING 子句中可以使用聚合函数,这是它与 WHERE 的主要区别之一。

  4. NULL 值处理:GROUP BY 会将所有 NULL 值视为相同的分组。

 

实际案例

案例1:销售分析

按地区和产品类别分组,计算销售总额,并筛选出销售额超过10000的组合

selectregion,product_category,sum(sales_acount) as total_sales,count(*) as transaction_count
from sales
group by region,prodect_category
having sun(sales_amount) >10000
order by total_sales desc;

案例2:学生成绩分析

 按班级和科目分组,计算平均分,并筛选出平均分低于60的科目

selectcalss,subject,avg(score) as avg_score,count(*) as student_count
from exam_results
group by class,subject
having avg(score) < 60
order by class,avg_score;

http://www.dtcms.com/a/311977.html

相关文章:

  • PyTorch 中 Tensor 统计学函数及相关概念
  • 基于单片机一氧化碳CO检测/煤气防中毒检测报警系统
  • OneCode 3.0智能分页拦截器深度解析:从拦截机制到性能优化
  • 轨道追逃博弈仿真
  • 输电线路建模与电力负荷特性详解(含等值模型与曲线分析)
  • Vue 详情模块 4
  • SQL语言学习(JOIN)
  • Orange的运维学习日记--25.Linux文件系统基本管理
  • 使用xshell连接远程腾讯云服务器,报错:Xshell Socket error Event: 32 Error: 10053
  • 智能图书馆管理系统开发实战系列(五):前后端集成 - koffi调用与接口设计
  • 用resmon搜索某文件被未知程序占用而无法删除
  • 第15届蓝桥杯Python青少组_省赛_中/高级组2024年8月真题
  • Java,八股,cv,算法——双非研0四修之路day23
  • SpringBoot 信用卡检测、OpenAI gym、OCR结合、DICOM图形处理、知识图谱、农业害虫识别实战
  • 博客|基于Springboot的个人博客系统设计与实现(源码+数据库+文档)
  • 占道经营识别漏检率↓76%:陌讯动态场景适配算法实战解析
  • 区分「尊重」和「顺从」
  • FastAPI入门:响应模型
  • 如何分析Linux内存性能问题
  • Windows字体simsum.ttf的安装与Python路径设置指南
  • junit中@InjectMocks作用详解
  • wgd v1.1.2 安装与使用-生信工具056
  • Java 字符串常量池 +反射,枚举和lambda表达式
  • 【数据结构】栈的顺序存储(整型栈、字符栈)
  • Postman四种请求教程
  • unsloth - LLM超级轻量级微调框架
  • ollama 多实例部署
  • 语音识别数据集
  • 【ROS2】ROS2节点Node机制与常用命令行
  • Autosar Nm-网管报文PNC停发后无法休眠问题排查