机器人位姿变换的坐标系相对性:左乘法则与右乘法则解析
文章目录
- 1. 全局坐标系下机器人位姿更新的左乘法则
- 2. 局部坐标系下机器人位姿增量更新的右乘法则
- 3. 相对位姿的计算
- 3.1. 基于世界坐标系(全局变换)
- 3.2. 基于 t1t_1t1 时刻相机的局部坐标系(局部变换)
- 3.3. 两者区别
设机器人当前位姿(位置和姿态)表示为齐次变换矩阵 Tcurrent\boldsymbol{T}_{current}Tcurrent,该矩阵将局部坐标系(机器人自身坐标系)的点坐标映射到世界坐标系:
Pworld=Tcurrent⋅Plocal\boldsymbol{P}_{world} = \boldsymbol{T}_{current} \cdot \boldsymbol{P}_{local} Pworld=Tcurrent⋅Plocal其中,Plocal\boldsymbol{P}_{local}Plocal 是点在局部坐标系中的坐标,Pworld\boldsymbol{P}_{world}Pworld 是其在世界坐标系中的坐标。
1. 全局坐标系下机器人位姿更新的左乘法则
若变换基于全局坐标系(例如,沿世界坐标系X轴平移3米),则增量变换 ΔT\Delta \boldsymbol{T}ΔT 的定义需满足:ΔT\Delta \boldsymbol{T}ΔT 的旋转轴/平移方向由世界坐标系的轴向决定,与机器人当前姿态无关。
因此,先将局部坐标 Plocal\boldsymbol{P}_{\text{local}}Plocal 通过 Tcurrent\boldsymbol{T}_{current}Tcurrent 映射到世界坐标系,得 Pworld\boldsymbol{P}_{world}Pworld。再在世界坐标系中应用全局变换 ΔT\Delta \boldsymbol{T}ΔT,得到新坐标 ΔT⋅Pworld\Delta \boldsymbol{T} \cdot \boldsymbol{P}_{world}ΔT⋅Pworld。即有:
ΔT⋅(Tcurrent⋅Plocal)=(ΔT⋅Tcurrent)⋅Plocal⇒Tnew=ΔT⋅Tcurrent\Delta \boldsymbol{T} \cdot (\boldsymbol{T}_{current} \cdot \boldsymbol{P}_{\text{local}}) = (\Delta \boldsymbol{T} \cdot \boldsymbol{T}_{current}) \cdot \boldsymbol{P}_{\text{local}} \Rightarrow \boldsymbol{T}_{new} = \Delta \boldsymbol{T} \cdot \boldsymbol{T}_{current} ΔT⋅(Tcurrent⋅Plocal)=(ΔT⋅Tcurrent)⋅Plocal⇒Tnew=ΔT⋅Tcurrent此即左乘公式,表明新位姿是全局变换与当前位姿的左乘组合。
2. 局部坐标系下机器人位姿增量更新的右乘法则
如果机器人需执行一个在当前局部坐标系(例如机器人自身坐标系)中描述的运动变换 ΔT\Delta \boldsymbol{T}ΔT。例如:
- 沿自身 X 轴移动 3 米:ΔT=[1003010000100001]\Delta \boldsymbol{T} = \begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}ΔT=1000010000103001
- 绕自身 Z 轴旋转 90°:ΔT=[0−100100000100001]\Delta \boldsymbol{T} = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}ΔT=0100−100000100001
则执行该运动后的机器人新位姿 Tnew\boldsymbol{T}_{\text{new}}Tnew 为当前位姿 Tcurrent\boldsymbol{T}_{\text{current}}Tcurrent 右乘该增量变换:
Tnew=TcurrentΔT\boldsymbol{T}_{\text{new}} = \boldsymbol{T}_{\text{current}} \Delta \boldsymbol{T} Tnew=TcurrentΔT对于在运动前的局部坐标系中定义的任意点 Plocal\boldsymbol{P}_{\text{local}}Plocal,应用变换 Tnew\boldsymbol{T}_{\text{new}}Tnew 将其映射到世界坐标系的结果,等同于先在原局部坐标系中应用增量变换 ΔT\Delta \boldsymbol{T}ΔT 得到 ΔTPlocal\Delta \boldsymbol{T} \boldsymbol{P}_{\text{local}}ΔTPlocal,然后将该结果再通过原当前位姿 Tcurrent\boldsymbol{T}_{\text{current}}Tcurrent 映射到世界坐标系。即:
TnewPlocal=Tcurrent(ΔTPlocal)\boldsymbol{T}_{\text{new}} \boldsymbol{P}_{\text{local}} = \boldsymbol{T}_{\text{current}} (\Delta \boldsymbol{T} \boldsymbol{P}_{\text{local}}) TnewPlocal=Tcurrent(ΔTPlocal)
3. 相对位姿的计算
相对位姿描述了两个坐标系之间的变换关系,包括旋转和平移,是机器人导航、三维重建、多传感器融合等领域的核心问题。
设 T1\boldsymbol{T}_1T1 和 T2\boldsymbol{T}_2T2 分别表示相机在时刻 t1t_1t1 和 t2t_2t2 位姿变换矩阵。现从两个角度计算 T1\boldsymbol{T}_1T1 到 T2\boldsymbol{T}_2T2 的相对位姿 ΔT\Delta \boldsymbol{T}ΔT。
3.1. 基于世界坐标系(全局变换)
相对位姿 ΔTglobal\Delta \boldsymbol{T}_{\text{global}}ΔTglobal 在世界坐标系中定义,其数学表达为:
ΔTglobal=T2−1T1\Delta \boldsymbol{T}_{\text{global}} = \boldsymbol{T}_2^{-1} \boldsymbol{T}_1 ΔTglobal=T2−1T1其中,ΔTglobal\Delta \boldsymbol{T}_{\text{global}}ΔTglobal 的平移和旋转方向由世界坐标系的轴向决定。
推导如下:
世界坐标系中的点 Pw\boldsymbol{P}_wPw 在 t1t_1t1 和 t2t_2t2 时刻相机坐标系中的位置分别为 p1\boldsymbol{p}_1p1 和 p2\boldsymbol{p}_2p2,根据位姿定义:
Pw=T1p1=T2p2\boldsymbol{P}_w = \boldsymbol{T}_1 \boldsymbol{p}_1 = \boldsymbol{T}_2 \boldsymbol{p}_2 Pw=T1p1=T2p2则有:
p2=T2−1Pw=T2−1T1p1⇒ΔTglobal=T2−1T1\boldsymbol{p}_2 = \boldsymbol{T}_2^{-1} \boldsymbol{P}_w = \boldsymbol{T}_2^{-1} \boldsymbol{T}_1 \boldsymbol{p}_1 \Rightarrow \Delta \boldsymbol{T}_{\text{global}} = \boldsymbol{T}_2^{-1} \boldsymbol{T}_1 p2=T2−1Pw=T2−1T1p1⇒ΔTglobal=T2−1T1设 T1=[R1t10T1]\boldsymbol{T}_1 = \begin{bmatrix} \boldsymbol{R}_1 & \boldsymbol{t}_1 \\ \boldsymbol{0}^T & 1 \end{bmatrix}T1=[R10Tt11],T2=[R2t20T1]\boldsymbol{T}_2 = \begin{bmatrix} \boldsymbol{R}_2 & \boldsymbol{t}_2 \\ \boldsymbol{0}^T & 1 \end{bmatrix}T2=[R20Tt21],则有:
ΔTglobal=T2−1T1=[R2T−R2Tt20T1][R1t10T1]=[R2TR1R2Tt1−R2Tt20T1]\Delta \boldsymbol{T}_{\text{global}} = \boldsymbol{T}_2^{-1} \boldsymbol{T}_1 = \begin{bmatrix} \boldsymbol{R}_2^T & -\boldsymbol{R}_2^T \boldsymbol{t}_2 \\ \boldsymbol{0}^T & 1 \end{bmatrix} \begin{bmatrix} \boldsymbol{R}_1 & \boldsymbol{t}_1 \\ \boldsymbol{0}^T & 1 \end{bmatrix} = \begin{bmatrix} \boldsymbol{R}_2^T \boldsymbol{R}_1 & \boldsymbol{R}_2^T \boldsymbol{t}_1 -\boldsymbol{R}_2^T \boldsymbol{t}_2 \\ \boldsymbol{0}^T & 1 \end{bmatrix} ΔTglobal=T2−1T1=[R2T0T−R2Tt21][R10Tt11]=[R2TR10TR2Tt1−R2Tt21]
3.2. 基于 t1t_1t1 时刻相机的局部坐标系(局部变换)
相对位姿 ΔTlocal\Delta \boldsymbol{T}_{\text{local}}ΔTlocal 在 t1t_1t1 时刻相机自身的坐标系中定义,其数学表达为:
ΔTlocal=T1−1⋅T2\Delta \boldsymbol{T}_{\text{local}} = \boldsymbol{T}_1^{-1} \cdot \boldsymbol{T}_2 ΔTlocal=T1−1⋅T2其中,ΔTlocal\Delta \boldsymbol{T}_{\text{local}}ΔTlocal 的平移和旋转方向由 t1t_1t1 时刻相机的朝向决定。
上述公式根据局部坐标系下机器人位姿增量更新的右乘法则易得,且有:
ΔTlocal=T1−1⋅T2=[R1T−R1Tt10T1][R2t20T1]=[R1TR2R1Tt2−R1Tt10T1]\Delta \boldsymbol{T}_{\text{local}} = \boldsymbol{T}_1^{-1} \cdot \boldsymbol{T}_2 = \begin{bmatrix} \boldsymbol{R}_1^T & -\boldsymbol{R}_1^T \boldsymbol{t}_1 \\ \boldsymbol{0}^T & 1 \end{bmatrix} \begin{bmatrix} \boldsymbol{R}_2 & \boldsymbol{t}_2 \\ \boldsymbol{0}^T & 1 \end{bmatrix} = \begin{bmatrix} \boldsymbol{R}_1^T \boldsymbol{R}_2 & \boldsymbol{R}_1^T \boldsymbol{t}_2 - \boldsymbol{R}_1^T \boldsymbol{t}_1 \\ \boldsymbol{0}^T & 1 \end{bmatrix} ΔTlocal=T1−1⋅T2=[R1T0T−R1Tt11][R20Tt21]=[R1TR20TR1Tt2−R1Tt11]
3.3. 两者区别
角度 | 数学公式 | 坐标系依赖 | 乘法顺序 |
---|---|---|---|
世界坐标系(全局) | ΔTglobal=T2−1T1\Delta \boldsymbol{T}_{\text{global}} = \boldsymbol{T}_2^{-1} \boldsymbol{T}_1ΔTglobal=T2−1T1 | 世界坐标系轴向固定 | 左乘 |
t1t_1t1 相机坐标系(局部) | ΔTlocal=T1−1T2\Delta \boldsymbol{T}_{\text{local}} = \boldsymbol{T}_1^{-1} \boldsymbol{T}_2ΔTlocal=T1−1T2 | 依赖 t1t_1t1 时刻相机自身朝向 | 右乘 |