当前位置: 首页 > news >正文

【分明集合】特征函数、关系与运算

经典的集合论中,对于一个给定的集合,任意一个元素,或者属于这个集合,或者不属于这个集合,二者必居其一,且仅居其一,为了加以区分, 通常将这样的集合称为分明集合、经典集合或者普通集合。

分明集合的特征函数

一般用分明集合的特征函数来刻画分明集合以及分明集合间的关系与运算$x\in X,\chi_A(x)$

幂集:设论域为非空集合$X$,称$P(X)=\{A|A\subseteq X\}$X 的幂集.

$A\in P(X)$,定义:

\begin{aligned}\chi_A:X&\longrightarrow\{0,1\}\\x&\longmapsto\chi_A(x)\end{aligned}

其中,

\chi_A(x)=\begin{cases}1,&x\in A\\0,&x\notin A\end{cases}

函数\chi_A称为X的特征函数

分明集合A由其特征函数 \chi_A 唯一确定。

对任意$x\in X,\chi_A(x)$ 表示xA的属于程度。

$\chi_A( x) = 1$表示 xA的属于程度是 100%, 即$x\in A$;  
$\chi_A(x)=0$表示 xA的属于程度是0,即 $x\notin A$

对任意$x\in X$,$x\in A$,或者 $x\notin A$, 二者必居其一且仅居其一。

分明集合间的关系与运算

分明集合间的关系与运算可以由其特征函数来刻画.
1.A\subseteq B\Longleftrightarrow对任意$x\in X$,有$\chi_A(x)\leqslant\chi_B(x).$

2.A\subset B\Longleftrightarrow对任意$x\in X$,有$\chi_A(x)\leqslant\chi_B(x)$,且存在$x_0\in X$,使得$\chi_A(x_0)<\chi_B(x_0).$

3.A=B\Longleftrightarrow对任意 $x\in X$,有\chi_A( x) = \chi_B( x).

4.\chi_{A\cup B}(x)=\max\{\chi_A(x),\chi_B(x)\}=\chi_A(x)\:\bigvee\chi_B(x),x\in X.

5.\begin{aligned}\chi_{A\cap B}(x)=\min\{\chi_A(x),\chi_B(x)\}=\chi_A(x)\bigwedge\chi_B(x),x\in X.\end{aligned}

6.\chi_{A^{c}}(x)=1-\chi_{A}(x),x\in X.

7.\begin{aligned}\chi_{\cup_{i\in I}A_i}(x)=\sup\{\chi_{A_i}(x)|i\in I\}=\bigvee\{\chi_{A_i}(x)|i\in I\}=\bigvee_{i\in I}\chi_{A_i}(x),x\in X.\end{aligned}

8.\begin{aligned}\chi_{\cup_{i\in I}A_i}(x)=\sup\{\chi_{A_i}(x)|i\in I\}=\bigvee\{\chi_{A_i}(x)|i\in I\}=\bigvee_{i\in I}\chi_{A_i}(x),x\in X.\end{aligned}

分明集合间运算的性质

\mathcal{P}(X)是分明集合

A,B,C\in\mathcal{P}(X),有

1.幂等律:A\bigcup A=A,\:A\bigcap A=A

2.交换律:A\bigcup B=B\bigcup A,A\bigcap B=B\bigcap A

3.结合律:(A\bigcup B)\bigcup C=A\bigcup(B\bigcup C),(A\bigcap B)\bigcap C=A\bigcap(B\bigcap C)

4.吸收律:A\bigcup(A\bigcap B)=A,A\bigcap(A\bigcup B)=A

5.分配律:A\bigcap (B\bigcup C)=(A\bigcap B)\bigcup(A\bigcap C) \\ \\ A\bigcup(B\bigcap C)=(A\bigcup B)\bigcap(A\bigcup C)

6.两极律:\begin{aligned}A\bigcup X=X,A\bigcap X=A,A\bigcup\emptyset=A,A\bigcap\emptyset=\emptyset\end{aligned}

7.补余律:A\bigcup A^\mathrm{c}=X,A\bigcap A^\mathrm{c}=\emptyset

8.复原律:(A^{\mathrm{c}})^{\mathrm{c}}=A

9.对偶律:(A\bigcap B)^c=A^c\bigcup B^c,(A\bigcup B)^c=A^c\bigcap B^c

10.无限分配律:\begin{aligned}A\bigcap(\bigcup_{i\in I}A_i)&=\bigcup_{i\in I}(A\bigcap A_i),A\bigcup(\bigcap_{i\in I}A_i)&=\bigcap_{i\in I}(A\bigcup A_i)\end{aligned}

I为任意指标集,\begin{aligned}i\in I,A_{i}\in\mathcal{P}(X)\end{aligned}

无限分配律是分配律的更一般情形

11.无限对偶律:(\bigcap_{i\in I}A_i)^c=\bigcup_{i\in I}(A_i)^c,(\bigcup_{i\in I}A_i)^c=\bigcap_{i\in I}(A_i)^c

无限对偶律是对偶律的更一般情形

注:相较模糊集合间运算的性质,多了补余律

http://www.dtcms.com/a/264442.html

相关文章:

  • 【格与代数系统】格与哈斯图
  • 笨方法学python-习题12
  • Sql注入中万能密码order by联合查询利用
  • 应急响应类题练习——玄机第四章 windows实战-emlog
  • Foundation 5 安装使用教程
  • SQL SELECT 语句
  • 在线租房平台源码+springboot+vue3(前后端分离)
  • 应急响应类题练习——玄机第五章 Windows 实战-evtx 文件分析
  • 6.Docker部署ES+kibana
  • Vite 7.0 与 Vue 3.5:前端开发的性能革命与功能升级
  • 【环境配置】Neo4j Community Windows 安装教程
  • HDMI 2.1 FRL协议的流控机制:切片传输(Slicing)和GAP插入
  • LL面试题11
  • 10授权
  • Vue 3 中的 `h` 函数详解
  • Rust征服字节跳动:高并发服务器实战
  • 飞算智造JavaAI:智能编程革命——AI重构Java开发新范式
  • Windows10/11 轻度优化 纯净版,12个版本!
  • 深度学习常见的激活函数
  • 【Python基础】11 Python深度学习生态系统全景解析:从基础框架到专业应用的技术深度剖析(超长版,附多个代码及结果)
  • 【深度学习1】ModernBert学习
  • RNN和LSTM
  • [面试] 手写题-防抖,节流
  • Python应用指南:利用高德地图API获取公交+地铁可达圈(三)
  • 菜谱大全——字符串处理艺术:从文本解析到高效搜索 [特殊字符][特殊字符]
  • 锂离子电池均衡拓扑综述
  • 阶段二JavaSE进阶阶段之多态、关键字、抽象类 2.3
  • 8.Docker镜像讲解
  • 大模型-分布式论文一瞥
  • twikitFKS: 基于 twikit 2.3.1 的改进版本