当前位置: 首页 > news >正文

Linux驱动学习day11(定时器)

定时器

定时器主要作用就是:设置超时时间,执行超时函数。

按键按下存在抖动,为了消除抖动可以设置定时器,如上图所示,按下一次按键会产生多次抖动,即会产生多次中断,在每次中断产生的时候,设置定时器,定时器时间是当前时间+超时时间,这样每次中断产生都会重新设置定时器时间,等到按键不抖动稳定的时候,就不会再改变定时器时间,这时候我们再记录按键值,就很稳定了。

内核中使用定时器的主要函数 

timer_setup(老版本setup_timer)

设置定时器,主要是初始化timer_list结构体,设置其中参数和函数

#define timer_setup(timer, callback, flags)			\__init_timer((timer), (callback), (flags))

add_timer

向内核添加定时器,timer->expires表示超时时间,时间到了内核会自动调用timer->function。

void add_timer(struct timer_list *timer)
{BUG_ON(timer_pending(timer));mod_timer(timer, timer->expires);
}

mod_timer

修改定时器超时时间

int mod_timer(struct timer_list *timer, unsigned long expires)
{return __mod_timer(timer, expires, 0);
}

del_timer

删除定时器

int del_timer(struct timer_list *timer)
{struct timer_base *base;unsigned long flags;int ret = 0;debug_assert_init(timer);if (timer_pending(timer)) {base = lock_timer_base(timer, &flags);ret = detach_if_pending(timer, base, true);raw_spin_unlock_irqrestore(&base->lock, flags);}return ret;
}

查看系统定时器时间:进入到内核目录,vi .config 搜索/CONFIG_HZ

3568系统tick如上图所示 3.33ms发生一次中断。每发生一次中断,全局变量jiffies会加1,所以定时器时间都是基于jiffies的。

修改时间有下面两种方法

/* add_timer之前 */
timer.expires = jiffies + xxx; /* xxx * 3.33ms */
timer.expires = jiffies + 2*HZ;/* jiffies 再加上 2 秒的时间 *//* add_timer之后 */
mod_timer(&timer , jiffies + xxx);
mod_timer(&timer , jiffies + 2*HZ);

 含定时器的驱动代码

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/uaccess.h>
#include <linux/types.h>
#include <linux/device.h>
#include <linux/gpio/consumer.h>
#include <linux/platform_device.h>
#include <linux/of_device.h>
#include <linux/of_gpio.h>
#include <linux/interrupt.h>
#include <linux/gfp.h>
#include <linux/of_irq.h>
#include <linux/poll.h>
#include <linux/timer.h>#define BUF_LEN 128
#define NEXT_POS(x) ((x + 1) % BUF_LEN)static DECLARE_WAIT_QUEUE_HEAD(gpio_key_wait);
static struct fasync_struct *button_fasync;static struct class *mybutton_class;
static struct gpio_inf *gpio_if;
static int major;
static int g_key[BUF_LEN];
static int r, w;struct gpio_inf {int gpio;int irq;struct gpio_desc *gpiod;enum of_gpio_flags flag;struct timer_list my_button_timer;
};static int is_key_buf_empty(void) {return (r == w);
}static int is_key_buf_full(void) {return (r == NEXT_POS(w));
}static void put_key(int key) {if (!is_key_buf_full()) {g_key[w] = key;w = NEXT_POS(w);}
}static int get_key(void) {int key = 0;if (!is_key_buf_empty()) {key = g_key[r];r = NEXT_POS(r);}return key;
}static void mybutton_keys_timer(struct timer_list *t)
{int val, key;struct gpio_inf *gf = from_timer(gf, t, my_button_timer);if(!gf)return;val = gpio_get_value(gf->gpio);printk("mybutton_keys_timer key %d value%d\n", gf->gpio, val);key = (gf->gpio << 8) | val;put_key(key);wake_up_interruptible(&gpio_key_wait);kill_fasync(&button_fasync, SIGIO, POLL_IN);return;
}static irqreturn_t my_key_handler(int irq, void *dev_id) 
{struct gpio_inf * inf = (struct gpio_inf *)dev_id;printk("my_key_handler %s %s %d key:%d\n", __FILE__, __FUNCTION__, __LINE__ , inf->gpio);mod_timer(&inf->my_button_timer, jiffies + HZ/50);return IRQ_HANDLED;
}static ssize_t gpio_button_read(struct file *file, char __user *buf, size_t size, loff_t *off) {int err, key;//printk("%s %s %d\n", __FILE__, __FUNCTION__, __LINE__);if(is_key_buf_empty() && (file->f_flags & O_NONBLOCK))return -EAGAIN;wait_event_interruptible(gpio_key_wait, !is_key_buf_empty());key = get_key();err = copy_to_user(buf, &key, 4);return 4;
}static unsigned int gpio_button_poll(struct file *fp, poll_table *wait) {//printk("%s %s %d\n", __FILE__, __FUNCTION__, __LINE__);poll_wait(fp, &gpio_key_wait, wait);return is_key_buf_empty() ? 0 : POLLIN | POLLRDNORM;
}static int gpio_button_fasync(int fd, struct file *file, int on)
{//printk("%s %s %d\n" , __FILE__ , __FUNCTION__ , __LINE__);if(fasync_helper(fd, file, on , &button_fasync) >= 0)return 0;elsereturn -EIO;
}static struct file_operations button_opr = {.owner  = THIS_MODULE,.read   = gpio_button_read,.poll   = gpio_button_poll,.fasync = gpio_button_fasync,
};static const struct of_device_id my_key[] = {{ .compatible = "my,mybutton" },{},
};MODULE_DEVICE_TABLE(of, my_key);static int chip_demo_gpio_probe(struct platform_device *pdev) {int count, i, err;struct device_node *node;enum of_gpio_flags flag;printk("%s %s %d\n", __FILE__, __FUNCTION__, __LINE__);node = pdev->dev.of_node;count = of_gpio_count(node);if (count <= 0) {dev_err(&pdev->dev, "Invalid GPIO count: %d\n", count);return -EINVAL;}gpio_if = kzalloc(count * sizeof(struct gpio_inf), GFP_KERNEL);if (!gpio_if) {dev_err(&pdev->dev, "Failed to allocate memory\n");return -ENOMEM;}for (i = 0; i < count; i++) {gpio_if[i].gpio  = of_get_gpio_flags(node, i, &flag);gpio_if[i].irq   = gpio_to_irq(gpio_if[i].gpio);gpio_if[i].gpiod = gpio_to_desc(gpio_if[i].gpio);gpio_if[i].flag  = flag & OF_GPIO_ACTIVE_LOW;err = request_irq(gpio_if[i].irq, my_key_handler,IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,"my_key", &gpio_if[i]);if (err) {printk("request_irq %d failed\n", gpio_if[i].irq);}timer_setup(&gpio_if[i].my_button_timer, mybutton_keys_timer , 0);gpio_if[i].my_button_timer.expires = ~0; /* 最大超时时间 */add_timer(&gpio_if[i].my_button_timer);}return 0;
}static int chip_demo_gpio_remove(struct platform_device *pdev) {int count, i;struct device_node *node = pdev->dev.of_node;printk("%s %s %d\n", __FILE__, __FUNCTION__, __LINE__);count = of_gpio_count(node);for (i = 0; i < count; i++) {del_timer(&gpio_if[i].my_button_timer);free_irq(gpio_if[i].irq, &gpio_if[i]);}kfree(gpio_if);return 0;
}static struct platform_driver my_key_drv = {.probe = chip_demo_gpio_probe,.remove = chip_demo_gpio_remove,.driver = {.name = "my_key_drv",.of_match_table = my_key,}
};static int __init gpio_key_drv_init(void) {int err;// 注册字符设备major = register_chrdev(0, "my_button", &button_opr);if (major < 0) {printk("register_chrdev failed: %d\n", major);return major;}mybutton_class = class_create(THIS_MODULE, "mybutton_class");if (IS_ERR(mybutton_class)) {unregister_chrdev(major, "my_button");printk("class_create failed\n");return PTR_ERR(mybutton_class);}device_create(mybutton_class, NULL, MKDEV(major, 0), NULL, "my_button");printk("char device /dev/my_button created, major=%d\n", major);// 注册 platform 驱动err = platform_driver_register(&my_key_drv);if (err) {device_destroy(mybutton_class, MKDEV(major, 0));class_destroy(mybutton_class);unregister_chrdev(major, "my_button");return err;}return 0;
}static void __exit gpio_key_drv_exit(void) {platform_driver_unregister(&my_key_drv);device_destroy(mybutton_class, MKDEV(major, 0));class_destroy(mybutton_class);unregister_chrdev(major, "my_button");printk("char device /dev/my_button removed\n");
}module_init(gpio_key_drv_init);
module_exit(gpio_key_drv_exit);
MODULE_LICENSE("GPL");

 tasklet

当硬件中断发生时,系统首先调用对应的硬件中断处理函数(ISR),该函数完成紧急任务后迅速返回。随后,系统会处理软中断(softirq),内核维护了一个软中断处理函数数组 softirq_vec[],其中包含了用于执行延后任务的函数。作为软中断的一种实现,tasklet被安排在软中断中执行;当中断处理函数通过 tasklet_schedule() 调度tasklet时,该tasklet被加入执行链表。软中断触发时,系统调用 tasklet_action() 遍历tasklet链表,依次执行每个tasklet的处理函数,从而完成硬件中断的后续工作。

根据上述流程,可以得出:

1、为每个按键添加tasklet。tasklet_init()

2、写软中断执行函数

2、在request_irq的中断处理函数中,调度tasklet。tasklet_schedule()。将tasklet加入软中断执行链表。

驱动程序代码

这里我在结构体里面添加了last_val,为了判断按键按下是否发生变化,变化则记录其值,没变化就不记录,这是因为正点原子RK3568中使用GPIO引脚电平来模拟按键按下和松开,我的板子在这块贼不稳定,一会就跳出一大堆信息,如下图所示:

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/uaccess.h>
#include <linux/types.h>
#include <linux/device.h>
#include <linux/gpio/consumer.h>
#include <linux/platform_device.h>
#include <linux/of_device.h>
#include <linux/of_gpio.h>
#include <linux/interrupt.h>
#include <linux/gfp.h>
#include <linux/of_irq.h>
#include <linux/poll.h>
#include <linux/timer.h>#define BUF_LEN 128
#define NEXT_POS(x) ((x + 1) % BUF_LEN)static DECLARE_WAIT_QUEUE_HEAD(gpio_key_wait);
static struct fasync_struct *button_fasync;static struct class *mybutton_class;
static struct gpio_inf *gpio_if;
static int major;
static int g_key[BUF_LEN];
static int r, w;struct gpio_inf {int gpio;int irq;int last_val;struct gpio_desc *gpiod;enum of_gpio_flags flag;struct timer_list my_button_timer;struct tasklet_struct task;
};static int is_key_buf_empty(void) {return (r == w);
}static int is_key_buf_full(void) {return (r == NEXT_POS(w));
}static void put_key(int key) {if (!is_key_buf_full()) {g_key[w] = key;w = NEXT_POS(w);}
}static int get_key(void) {int key = 0;if (!is_key_buf_empty()) {key = g_key[r];r = NEXT_POS(r);}return key;
}static void mybutton_keys_timer(struct timer_list *t)
{int val, key;struct gpio_inf *gf = from_timer(gf, t, my_button_timer);if(!gf)return;val = gpio_get_value(gf->gpio);if (val != gf->last_val) {gf->last_val = val;  // 更新记录值return;  // 状态不稳定,忽略这次}printk("mybutton_keys_timer key %d value%d\n", gf->gpio, val);key = (gf->gpio << 8) | val;put_key(key);wake_up_interruptible(&gpio_key_wait);kill_fasync(&button_fasync, SIGIO, POLL_IN);return;
}static void my_button_tasklet(unsigned long data)
{int val, key;struct gpio_inf *gf = (struct gpio_inf *)data;if(!gf)return;val = gpio_get_value(gf->gpio);if (val != gf->last_val) {gf->last_val = val;  return;  }printk("my_button_tasklet key %d value%d\n", gf->gpio, val);key = (gf->gpio << 8) | val;put_key(key);wake_up_interruptible(&gpio_key_wait);kill_fasync(&button_fasync, SIGIO, POLL_IN);return;
}static irqreturn_t my_key_handler(int irq, void *dev_id) 
{struct gpio_inf * inf = (struct gpio_inf *)dev_id;//printk("my_key_handler %s %s %d key:%d\n", __FILE__, __FUNCTION__, __LINE__ , inf->gpio);tasklet_schedule(&inf->task);mod_timer(&inf->my_button_timer, jiffies + HZ/50);return IRQ_HANDLED;
}static ssize_t gpio_button_read(struct file *file, char __user *buf, size_t size, loff_t *off) {int err, key;//printk("%s %s %d\n", __FILE__, __FUNCTION__, __LINE__);if(is_key_buf_empty() && (file->f_flags & O_NONBLOCK))return -EAGAIN;wait_event_interruptible(gpio_key_wait, !is_key_buf_empty());key = get_key();err = copy_to_user(buf, &key, 4);return 4;
}static unsigned int gpio_button_poll(struct file *fp, poll_table *wait) {//printk("%s %s %d\n", __FILE__, __FUNCTION__, __LINE__);poll_wait(fp, &gpio_key_wait, wait);return is_key_buf_empty() ? 0 : POLLIN | POLLRDNORM;
}static int gpio_button_fasync(int fd, struct file *file, int on)
{//printk("%s %s %d\n" , __FILE__ , __FUNCTION__ , __LINE__);if(fasync_helper(fd, file, on , &button_fasync) >= 0)return 0;elsereturn -EIO;
}static struct file_operations button_opr = {.owner  = THIS_MODULE,.read   = gpio_button_read,.poll   = gpio_button_poll,.fasync = gpio_button_fasync,
};static const struct of_device_id my_key[] = {{ .compatible = "my,mybutton" },{},
};MODULE_DEVICE_TABLE(of, my_key);static int chip_demo_gpio_probe(struct platform_device *pdev) {int count, i, err;struct device_node *node;enum of_gpio_flags flag;printk("%s %s %d\n", __FILE__, __FUNCTION__, __LINE__);node = pdev->dev.of_node;count = of_gpio_count(node);if (count <= 0) {dev_err(&pdev->dev, "Invalid GPIO count: %d\n", count);return -EINVAL;}gpio_if = kzalloc(count * sizeof(struct gpio_inf), GFP_KERNEL);if (!gpio_if) {dev_err(&pdev->dev, "Failed to allocate memory\n");return -ENOMEM;}for (i = 0; i < count; i++) {gpio_if[i].gpio  = of_get_gpio_flags(node, i, &flag);gpio_if[i].irq   = gpio_to_irq(gpio_if[i].gpio);gpio_if[i].gpiod = gpio_to_desc(gpio_if[i].gpio);gpio_if[i].flag  = flag & OF_GPIO_ACTIVE_LOW;gpio_if[i].last_val = gpio_get_value(gpio_if[i].gpio);err = request_irq(gpio_if[i].irq, my_key_handler,IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,"my_key", &gpio_if[i]);if (err) {printk("request_irq %d failed\n", gpio_if[i].irq);}timer_setup(&gpio_if[i].my_button_timer, mybutton_keys_timer , 0);gpio_if[i].my_button_timer.expires = ~0;add_timer(&gpio_if[i].my_button_timer);tasklet_init(&gpio_if[i].task, my_button_tasklet, (unsigned long)&gpio_if[i]);}return 0;
}static int chip_demo_gpio_remove(struct platform_device *pdev) {int count, i;struct device_node *node = pdev->dev.of_node;printk("%s %s %d\n", __FILE__, __FUNCTION__, __LINE__);count = of_gpio_count(node);for (i = 0; i < count; i++) {del_timer(&gpio_if[i].my_button_timer);free_irq(gpio_if[i].irq, &gpio_if[i]);tasklet_kill(&gpio_if[i].task);}kfree(gpio_if);return 0;
}static struct platform_driver my_key_drv = {.probe = chip_demo_gpio_probe,.remove = chip_demo_gpio_remove,.driver = {.name = "my_key_drv",.of_match_table = my_key,}
};static int __init gpio_key_drv_init(void) {int err;// 注册字符设备major = register_chrdev(0, "my_button", &button_opr);if (major < 0) {printk("register_chrdev failed: %d\n", major);return major;}mybutton_class = class_create(THIS_MODULE, "mybutton_class");if (IS_ERR(mybutton_class)) {unregister_chrdev(major, "my_button");printk("class_create failed\n");return PTR_ERR(mybutton_class);}device_create(mybutton_class, NULL, MKDEV(major, 0), NULL, "my_button");printk("char device /dev/my_button created, major=%d\n", major);// 注册 platform 驱动err = platform_driver_register(&my_key_drv);if (err) {device_destroy(mybutton_class, MKDEV(major, 0));class_destroy(mybutton_class);unregister_chrdev(major, "my_button");return err;}return 0;
}static void __exit gpio_key_drv_exit(void) {platform_driver_unregister(&my_key_drv);device_destroy(mybutton_class, MKDEV(major, 0));class_destroy(mybutton_class);unregister_chrdev(major, "my_button");printk("char device /dev/my_button removed\n");
}module_init(gpio_key_drv_init);
module_exit(gpio_key_drv_exit);
MODULE_LICENSE("GPL");

工作队列

中断下半部(timer,tasklet)都是在中断上下文中执行的,无法休眠,如果处理复杂事情的时候,无法休眠,会将CPU资源占满,无法执行用户程序,这样就会使得系统卡顿。为了解决该问题,可以使用线程处理复杂事情。线程可以休眠。(在内核中,使用工作队列,内核会自动创建内核线程)

缺点:当工作队列中前一个work比较耗时,这样就会影响到之后的work工作。

驱动要做的部分:

1、构造work,.func

2、将work放入队列,wake_up唤醒--->schedule_work();

如果处理的事情非常复杂,就不直接使用系统的内核线程,自己创建一个内核线程单独处理。

container_of() 可以获得结构体的地址,主要采用反推。

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/uaccess.h>
#include <linux/types.h>
#include <linux/device.h>
#include <linux/gpio/consumer.h>
#include <linux/platform_device.h>
#include <linux/of_device.h>
#include <linux/of_gpio.h>
#include <linux/interrupt.h>
#include <linux/gfp.h>
#include <linux/of_irq.h>
#include <linux/poll.h>
#include <linux/timer.h>
#include <linux/workqueue.h>#define BUF_LEN 128
#define NEXT_POS(x) ((x + 1) % BUF_LEN)static DECLARE_WAIT_QUEUE_HEAD(gpio_key_wait);
static struct fasync_struct *button_fasync;static struct class *mybutton_class;
static struct gpio_inf *gpio_if;
static int major;
static int g_key[BUF_LEN];
static int r, w;struct gpio_inf {int gpio;int irq;int last_val;struct gpio_desc *gpiod;enum of_gpio_flags flag;struct timer_list my_button_timer;struct tasklet_struct task;struct work_struct work;
};static int is_key_buf_empty(void) {return (r == w);
}static int is_key_buf_full(void) {return (r == NEXT_POS(w));
}static void put_key(int key) {if (!is_key_buf_full()) {g_key[w] = key;w = NEXT_POS(w);}
}static int get_key(void) {int key = 0;if (!is_key_buf_empty()) {key = g_key[r];r = NEXT_POS(r);}return key;
}static void mybutton_keys_timer(struct timer_list *t)
{int val, key;struct gpio_inf *gf = from_timer(gf, t, my_button_timer);if(!gf)return;val = gpio_get_value(gf->gpio);if (val != gf->last_val) {gf->last_val = val;  // 更新记录值return;  // 状态不稳定,忽略这次}printk("mybutton_keys_timer key %d value%d\n", gf->gpio, val);key = (gf->gpio << 8) | val;put_key(key);wake_up_interruptible(&gpio_key_wait);kill_fasync(&button_fasync, SIGIO, POLL_IN);return;
}static void my_button_tasklet(unsigned long data)
{int val, key;struct gpio_inf *gf = (struct gpio_inf *)data;if(!gf)return;val = gpio_get_value(gf->gpio);if (val != gf->last_val) {gf->last_val = val;  return;  }printk("my_button_tasklet key %d value%d\n", gf->gpio, val);key = (gf->gpio << 8) | val;put_key(key);wake_up_interruptible(&gpio_key_wait);kill_fasync(&button_fasync, SIGIO, POLL_IN);return;
}static void my_button_work_func(struct work_struct *work)
{int val, key;struct gpio_inf *gf = container_of(work, struct gpio_inf, work);if(!gf)return;val = gpio_get_value(gf->gpio);if (val != gf->last_val) {gf->last_val = val;  return;  }printk("my_button_work_func key %d value%d\n", gf->gpio, val);key = (gf->gpio << 8) | val;put_key(key);return;}static irqreturn_t my_key_handler(int irq, void *dev_id) 
{struct gpio_inf * inf = (struct gpio_inf *)dev_id;//printk("my_key_handler %s %s %d key:%d\n", __FILE__, __FUNCTION__, __LINE__ , inf->gpio);tasklet_schedule(&inf->task);mod_timer(&inf->my_button_timer, jiffies + HZ/50);schedule_work(&inf->work);return IRQ_HANDLED;
}static ssize_t gpio_button_read(struct file *file, char __user *buf, size_t size, loff_t *off) {int err, key;//printk("%s %s %d\n", __FILE__, __FUNCTION__, __LINE__);if(is_key_buf_empty() && (file->f_flags & O_NONBLOCK))return -EAGAIN;wait_event_interruptible(gpio_key_wait, !is_key_buf_empty());key = get_key();err = copy_to_user(buf, &key, 4);return 4;
}static unsigned int gpio_button_poll(struct file *fp, poll_table *wait) {//printk("%s %s %d\n", __FILE__, __FUNCTION__, __LINE__);poll_wait(fp, &gpio_key_wait, wait);return is_key_buf_empty() ? 0 : POLLIN | POLLRDNORM;
}static int gpio_button_fasync(int fd, struct file *file, int on)
{//printk("%s %s %d\n" , __FILE__ , __FUNCTION__ , __LINE__);if(fasync_helper(fd, file, on , &button_fasync) >= 0)return 0;elsereturn -EIO;
}static struct file_operations button_opr = {.owner  = THIS_MODULE,.read   = gpio_button_read,.poll   = gpio_button_poll,.fasync = gpio_button_fasync,
};static const struct of_device_id my_key[] = {{ .compatible = "my,mybutton" },{},
};MODULE_DEVICE_TABLE(of, my_key);static int chip_demo_gpio_probe(struct platform_device *pdev) {int count, i, err;struct device_node *node;enum of_gpio_flags flag;printk("%s %s %d\n", __FILE__, __FUNCTION__, __LINE__);node = pdev->dev.of_node;count = of_gpio_count(node);if (count <= 0) {dev_err(&pdev->dev, "Invalid GPIO count: %d\n", count);return -EINVAL;}gpio_if = kzalloc(count * sizeof(struct gpio_inf), GFP_KERNEL);if (!gpio_if) {dev_err(&pdev->dev, "Failed to allocate memory\n");return -ENOMEM;}for (i = 0; i < count; i++) {gpio_if[i].gpio  = of_get_gpio_flags(node, i, &flag);gpio_if[i].irq   = gpio_to_irq(gpio_if[i].gpio);gpio_if[i].gpiod = gpio_to_desc(gpio_if[i].gpio);gpio_if[i].flag  = flag & OF_GPIO_ACTIVE_LOW;gpio_if[i].last_val = gpio_get_value(gpio_if[i].gpio);err = request_irq(gpio_if[i].irq, my_key_handler,IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,"my_key", &gpio_if[i]);if (err) {printk("request_irq %d failed\n", gpio_if[i].irq);}timer_setup(&gpio_if[i].my_button_timer, mybutton_keys_timer , 0);gpio_if[i].my_button_timer.expires = ~0;add_timer(&gpio_if[i].my_button_timer);tasklet_init(&gpio_if[i].task, my_button_tasklet, (unsigned long)&gpio_if[i]);INIT_WORK(&gpio_if[i].work, my_button_work_func);}return 0;
}static int chip_demo_gpio_remove(struct platform_device *pdev) {int count, i;struct device_node *node = pdev->dev.of_node;printk("%s %s %d\n", __FILE__, __FUNCTION__, __LINE__);count = of_gpio_count(node);for (i = 0; i < count; i++) {del_timer(&gpio_if[i].my_button_timer);free_irq(gpio_if[i].irq, &gpio_if[i]);tasklet_kill(&gpio_if[i].task);}kfree(gpio_if);return 0;
}static struct platform_driver my_key_drv = {.probe = chip_demo_gpio_probe,.remove = chip_demo_gpio_remove,.driver = {.name = "my_key_drv",.of_match_table = my_key,}
};static int __init gpio_key_drv_init(void) {int err;// 注册字符设备major = register_chrdev(0, "my_button", &button_opr);if (major < 0) {printk("register_chrdev failed: %d\n", major);return major;}mybutton_class = class_create(THIS_MODULE, "mybutton_class");if (IS_ERR(mybutton_class)) {unregister_chrdev(major, "my_button");printk("class_create failed\n");return PTR_ERR(mybutton_class);}device_create(mybutton_class, NULL, MKDEV(major, 0), NULL, "my_button");printk("char device /dev/my_button created, major=%d\n", major);// 注册 platform 驱动err = platform_driver_register(&my_key_drv);if (err) {device_destroy(mybutton_class, MKDEV(major, 0));class_destroy(mybutton_class);unregister_chrdev(major, "my_button");return err;}return 0;
}static void __exit gpio_key_drv_exit(void) {platform_driver_unregister(&my_key_drv);device_destroy(mybutton_class, MKDEV(major, 0));class_destroy(mybutton_class);unregister_chrdev(major, "my_button");printk("char device /dev/my_button removed\n");
}module_init(gpio_key_drv_init);
module_exit(gpio_key_drv_exit);
MODULE_LICENSE("GPL");

内核线程

 中断的线程化处理

主要程序代码

/* 注册irq时,使用request_threaded_irq */
err = request_threaded_irq(gpio_if[i].irq , my_key_handler , my_key_threaded_func , IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING | IRQF_ONESHOT , "my_key" , &gpio_if[i]);static irqreturn_t my_key_threaded_func(int irq, void *data)
{int val, key;struct gpio_inf *gf = (struct gpio_inf *)data ;val = gpio_get_value(gf->gpio);printk("my_key_threaded_func key %d value%d\n", gf->gpio, val);printk("my_key_threaded_func: the process is %s pid %d\n" , current->comm , current->pid);key = (gf->gpio << 8) | val;put_key(key);return IRQ_HANDLED;
}

结果如图所示

http://www.dtcms.com/a/262815.html

相关文章:

  • 百度文库智能PPT月访问量超3400万,用户规模翻倍增长
  • demo01:基于 SpringMVC 的用户管理系统
  • AlpineLinux安装部署MongoDB
  • Clickhouse源码分析-TTL执行流程
  • 杂谈-架构时代演进
  • C语言常用转换函数实现原理
  • 50天50个小项目 (Vue3 + Tailwindcss V4) ✨ | ThemeClock(主题时钟)
  • Windows环境下Docker容器化的安装与设置指南
  • 【第二章:机器学习与神经网络概述】04.回归算法理论与实践 -(1)线性回归模型
  • AWS WebRTC:通过shell分析并发启动master后产生的日志文件
  • 御控助力打造物联网实训室,赋能职业教育高质量发展
  • 大模型-分布式推理简介
  • Linux基础环境开发工具apt、vim和gcc/g++
  • STC8H驱动两相四线步进电机
  • 基于llama-factory+ollama+vllm加速大模型训推生产
  • 大数据(4)-spark
  • Windows 开发环境部署指南:WSL、Docker Desktop、Podman Desktop 部署顺序与存储路径迁移指南
  • STM32-第一节-新建工程,GPIO,点亮LED,蜂鸣器
  • GC3910S:一款高性能双通道直流电机驱动芯片
  • 【Wireshark】高级过滤技巧精讲
  • Chromium 136 编译指南 Ubuntu篇:Python环境与开发工具配置(五)
  • 解决VSCode打开最近项目后终端shell不正常的问题
  • TCP 滑动窗口实现机制
  • 颠覆传统加密:微算法科技创新LSQb算法,提升量子图像处理速度
  • 芯谷科技--150KHz 3A PWM 降压型 DC/DC 转换器D1507
  • 【原创】【5】【视频二创工具发布】基于视觉模型+FFmpeg+MoviePy实现短视频自动化二次编辑+多赛道
  • UE5 一台电脑+双显示器 配置nDisplay裸眼3D效果
  • 【MCP服务】蓝耘元生代 | 蓝耘MCP平台来袭!DeepSeek MCP服务器玩转大模型集成
  • 【启发式算法】Dynamic A*(D*)算法详细介绍(Python)
  • 直播 APP 开发需要多少成本