当前位置: 首页 > news >正文

FPGA VIVADO:axi-lite 从机和主机

FPGA VIVADO:axi-lite 从机和主机


@TOC在这里插入代码片


前言


协议就不详细讲解了,直接看手册即可。下面主要如何写代码和关键的时序。

此外下面的代码可以直接用于实际工程

一、AXI-LITE 主机

数据转axi lite接口:
读/写数据FIFO缓存
仲裁:写优先
AXI LITE 总线输出
以下是axi-lite主机的代码:
主要思路:
先理清楚下面5个通道,一个一个来看,端口再多理顺了就好了

  • AW
  • W
  • B
  • AR
  • R

上面是五个通道关键的名称,在写代码时,也按照这五个通道分别命名,就可以批量复制的写代码了!

代码设计思路:

  • 采用背靠背的方式写AW通道和W通道
  • 当握手完成,代表数据已经被从机捕获
  • 使用fifo做批量数据缓存
// 数据转axi lite接口:
// 读/写数据FIFO缓存
// 仲裁:写优先
// AXI LITE 总线输出
module axi_master_driver#(
	parameter	P_AXI_ADDR_WIDTH = 32,
	parameter	P_AXI_DATA_WIDTH = 32
)(
	input								M_AXI_CLK			,
	input								M_AXI_RST_N         ,
	input	[P_AXI_ADDR_WIDTH - 1:0]	M_SLAVE_BASE_ADDR   ,
	
	
	output	[P_AXI_ADDR_WIDTH - 1:0]	M_AXI_AWADDR	    ,
	output	[2 : 0]	                    M_AXI_AWPROT        ,
	output		                        M_AXI_AWVALID       ,
	input		                        M_AXI_AWREADY       ,
	
	output	[P_AXI_DATA_WIDTH - 1:0]	M_AXI_WDATA		    ,
	output	[P_AXI_DATA_WIDTH/8 - 1:0]	M_AXI_WSTRB 	    ,   
	output		                        M_AXI_WVALID	    ,   
	input		                        M_AXI_WREADY	    ,   
	
	input	[1:0]	                    M_AXI_BRESP		    ,
	input		                        M_AXI_BVALID        ,
	output		                        M_AXI_BREADY        ,
	
	
	output	[P_AXI_ADDR_WIDTH - 1:0]	M_AXI_ARADDR	    ,
	output	[2 : 0]	                    M_AXI_ARPROT        ,
	output		                        M_AXI_ARVALID       ,
	input		                        M_AXI_ARREADY       ,
	
	input	[P_AXI_DATA_WIDTH - 1:0]	M_AXI_RDATA		    ,
	input	[1:0]	                    M_AXI_RRESP         ,
	input		                        M_AXI_RVALID        ,
	output		                        M_AXI_RREADY        ,

	input   [P_AXI_ADDR_WIDTH - 1:0]	i_awaddr			    ,
	input   [P_AXI_DATA_WIDTH - 1:0]	i_wdata             ,
	input								i_wdata_vld         ,
	
	input   [P_AXI_ADDR_WIDTH - 1:0]	i_raddr			    ,
	input   							i_raddr_vld         ,
	output  [P_AXI_DATA_WIDTH - 1:0]	o_rdata             ,
	output	[1:0]						o_rresp			    ,
	output								o_rdata_vld		
);
// -------------------------------------------------------
logic	[P_AXI_ADDR_WIDTH - 1:0]	lg_M_AXI_AWADDR		    ;
logic	[2 : 0]	                    lg_M_AXI_AWPROT         ;
logic		                        lg_M_AXI_AWVALID        ;
logic	[P_AXI_DATA_WIDTH - 1:0]	lg_M_AXI_WDATA		    ;
logic	[P_AXI_DATA_WIDTH/8 - 1:0]	lg_M_AXI_WSTRB 	        ;
logic		                        lg_M_AXI_WVALID	        ;
logic		                        lg_M_AXI_BREADY         ;
logic	[P_AXI_ADDR_WIDTH - 1:0]	lg_M_AXI_ARADDR	        ;
logic	[2 : 0]	                    lg_M_AXI_ARPROT         ;
logic		                        lg_M_AXI_ARVALID        ;
logic		                        lg_M_AXI_RREADY         ;
logic 	[P_AXI_DATA_WIDTH - 1:0]	lg_rdata                ;
logic	[1:0]						lg_rresp	            ;
logic								lg_rdata_vld            ;
// --------------------------------------------------------
logic								lg_aw_active	;
logic								lg_w_active  	;
logic								lg_b_active  	;
logic								lg_ar_active 	;
logic								lg_r_active  	;
// --------------------------------------------------------	
logic		                        lg_fifo_awaddr_rd_en          ;
logic		                        lg_fifo_awaddr_rd_en_d1       ;
logic	[P_AXI_ADDR_WIDTH - 1:0]	lg_fifo_awaddr_dout           ;
logic		                        lg_fifo_awaddr_full           ;
logic		                        lg_fifo_awaddr_almost_full    ;
logic		                        lg_fifo_awaddr_empty          ;   
logic		                        lg_fifo_awaddr_valid          ;
logic	[4:0]                        lg_fifo_awaddr_data_count	  ;
logic		                        lg_fifo_aw_prog_full		  ;

logic		                        lg_fifo_wdata_rd_en           ;
logic	[P_AXI_ADDR_WIDTH - 1:0]	lg_fifo_wdata_dout            ;
logic		                        lg_fifo_wdata_full            ;
logic		                        lg_fifo_wdata_almost_full     ;
logic		                        lg_fifo_wdata_empty           ;   
logic		                        lg_fifo_wdata_valid           ;
logic	[4:0]	                        lg_fifo_wdata_data_count	  ;
logic		                        lg_fifo_w_prog_full		  	  ;

logic		                        lg_fifo_araddr_rd_en          ;
logic								lg_fifo_araddr_rd_en_d1		  ;
logic	[P_AXI_ADDR_WIDTH - 1:0]	lg_fifo_araddr_dout           ;
logic		                        lg_fifo_araddr_full           ;
logic		                        lg_fifo_araddr_almost_full    ;
logic		                        lg_fifo_araddr_empty          ;   
logic		                        lg_fifo_araddr_valid          ;
logic	[4:0]	                        lg_fifo_araddr_data_count	  ;
logic		                        lg_fifo_ar_prog_full		  ;
// --------------------------------------------------------	
logic				lg_wr_run;
logic				lg_rd_run;
// --------------------------------------------------------	
assign	M_AXI_AWADDR		=	lg_M_AXI_AWADDR		    ;	
assign	M_AXI_AWPROT        =	lg_M_AXI_AWPROT         ;
assign	M_AXI_AWVALID       =	lg_M_AXI_AWVALID        ;
assign	M_AXI_WDATA		    =	lg_M_AXI_WDATA		    ;
assign	M_AXI_WSTRB 	    =	lg_M_AXI_WSTRB 	        ;
assign	M_AXI_WVALID	    =	lg_M_AXI_WVALID	        ;
assign	M_AXI_BREADY        =	lg_M_AXI_BREADY         ;
assign	M_AXI_ARADDR	    =	lg_M_AXI_ARADDR	        ;
assign	M_AXI_ARPROT        =	lg_M_AXI_ARPROT         ;
assign	M_AXI_ARVALID       =	lg_M_AXI_ARVALID        ;
assign	M_AXI_RREADY        =	lg_M_AXI_RREADY         ;
assign	o_rdata             =	lg_rdata                ;
assign	o_rresp				= 	lg_rresp				;
assign	o_rdata_vld         =	lg_rdata_vld            ;
// --------------------------------------------------------
assign	lg_aw_active	= M_AXI_AWVALID & M_AXI_AWREADY;
assign	lg_w_active  	= M_AXI_WVALID  & M_AXI_WREADY ;
assign	lg_b_active  	= M_AXI_BVALID  & M_AXI_BREADY ;
assign	lg_ar_active 	= M_AXI_ARVALID & M_AXI_ARREADY;
assign	lg_r_active  	= M_AXI_RVALID  & M_AXI_RREADY ;

// ---------------- 读写控制 ----------------------
// 背靠背,数据和地址同时写;
// ==============================
// ==============================
always@(posedge M_AXI_CLK) begin
	if(M_AXI_RST_N == 1'b0)	
		lg_wr_run <= 'd0;
	else if(!lg_fifo_awaddr_empty)
		lg_wr_run <= 'd1;
	else
		lg_wr_run <= lg_wr_run;
end

always@(posedge M_AXI_CLK) begin
	if(M_AXI_RST_N == 1'b0)	
		lg_fifo_awaddr_rd_en <= 'd0;
	else if(lg_aw_active)
		lg_fifo_awaddr_rd_en <= 'd0;
	else if(!lg_fifo_awaddr_empty & !lg_wr_run)
		lg_fifo_awaddr_rd_en <= 'd1;
	else
		lg_fifo_awaddr_rd_en <= 'd0;
end

always@(posedge M_AXI_CLK) begin
	lg_fifo_awaddr_rd_en_d1 <= lg_fifo_awaddr_rd_en;
end


always@(posedge M_AXI_CLK) begin
	if(M_AXI_RST_N == 1'b0)	
		lg_rd_run <= 'd0;
	else if(lg_ar_active == 'd1)
		lg_rd_run <= 'd0;
	else if(!lg_fifo_araddr_empty & lg_fifo_awaddr_empty & !lg_wr_run)
		lg_rd_run <= 'd1;
	else
		lg_rd_run <= lg_rd_run;
end

always@(posedge M_AXI_CLK) begin
	if(M_AXI_RST_N == 1'b0)	
		lg_fifo_araddr_rd_en <= 'd0;
	else if(!lg_fifo_araddr_empty & lg_fifo_awaddr_empty & !lg_wr_run & !lg_rd_run) 
		lg_fifo_araddr_rd_en <= 'd1;
	else
		lg_fifo_araddr_rd_en <= 'd0;
end
always@(posedge M_AXI_CLK) begin
	lg_fifo_araddr_rd_en_d1 <= lg_fifo_araddr_rd_en;
end
// ================================================	
// 写数据、地址FIFO缓存	
// ================================================	
fifo_axi_master_32x32 fifo_axi_master_aw (
  .clk        (M_AXI_CLK           			    ),
  .din        (i_awaddr       	                ),     
  .wr_en      (i_wdata_vld                      ),  
  .rd_en      (lg_fifo_awaddr_rd_en             ),  			 
  .dout       (lg_fifo_awaddr_dout              ),            
  .full       (lg_fifo_awaddr_full              ),        
  .almost_full(lg_fifo_awaddr_almost_full       ),  
  .empty      (lg_fifo_awaddr_empty             ),  			 
  .valid      (lg_fifo_awaddr_valid             ),
  .data_count (lg_fifo_awaddr_data_count		),
  .prog_full  (lg_fifo_aw_prog_full				)     
);

fifo_axi_master_32x32 fifo_axi_master_w (
  .clk        (M_AXI_CLK           			  ),
  .din        (i_wdata       	              ),     
  .wr_en      (i_wdata_vld                    ),  
  .rd_en      (lg_fifo_awaddr_rd_en           ),  
  .dout       (lg_fifo_wdata_dout             ),
  .full       (lg_fifo_wdata_full             ),
  .almost_full(lg_fifo_wdata_almost_full      ),
  .empty      (lg_fifo_wdata_empty            ),
  .valid      (lg_fifo_wdata_valid            ),
  .data_count (lg_fifo_wdata_data_count		  ),
  .prog_full  (lg_fifo_w_prog_full			  )     
);

fifo_axi_master_32x32 fifo_axi_master_ar (
  .clk        (M_AXI_CLK           				),
  .din        (i_raddr       	                ),     
  .wr_en      (i_raddr_vld                      ),  
  .rd_en      (lg_fifo_araddr_rd_en             ),  
  .dout       (lg_fifo_araddr_dout              ),
  .full       (lg_fifo_araddr_full              ),
  .almost_full(lg_fifo_araddr_almost_full       ),
  .empty      (lg_fifo_araddr_empty             ),
  .valid      (lg_fifo_araddr_valid             ),
  .data_count (lg_fifo_araddr_data_count		),
  .prog_full  (lg_fifo_ar_prog_full				)     
);

// ----------- axi 时序 ------------------ 	

always@(posedge M_AXI_CLK) begin
	if(!M_AXI_RST_N) begin
		lg_M_AXI_AWADDR	    <= 'd0;
		lg_M_AXI_AWPROT     <= 'd0;
		lg_M_AXI_AWVALID  	<= 'd0;	
	end
	else if(lg_aw_active) begin
		lg_M_AXI_AWADDR	    <= 'd0;
		lg_M_AXI_AWPROT     <= 'd0;
		lg_M_AXI_AWVALID  	<= 'd0;		
	end	
	// 这里多打一拍的原因是因为fifo输出要延迟一拍
	else if(lg_fifo_awaddr_rd_en_d1) begin
		lg_M_AXI_AWADDR	    <= lg_fifo_awaddr_dout;
		lg_M_AXI_AWPROT     <= 'd0;
		lg_M_AXI_AWVALID  	<= 'd1;		
	end
	else begin
		lg_M_AXI_AWADDR	    <= lg_M_AXI_AWADDR	;
		lg_M_AXI_AWPROT     <= lg_M_AXI_AWPROT    ;
		lg_M_AXI_AWVALID  	<= lg_M_AXI_AWVALID  	;		
	end
end

always@(posedge M_AXI_CLK) begin
	if(!M_AXI_RST_N) begin
		lg_M_AXI_WDATA		<= 'd0;
		lg_M_AXI_WSTRB		<= 'd0; 
		lg_M_AXI_WVALID     <= 'd0;
	end
	else if(lg_w_active) begin
		lg_M_AXI_WDATA		<= 'd0;
		lg_M_AXI_WSTRB		<= 'd0; 
		lg_M_AXI_WVALID     <= 'd0;
	end	
	else if(lg_fifo_awaddr_rd_en_d1) begin
		lg_M_AXI_WDATA		<= lg_fifo_wdata_dout;
		lg_M_AXI_WSTRB		<= 'hF               ; 
		lg_M_AXI_WVALID     <= 'd1               ;
	end
	else begin
		lg_M_AXI_WDATA		<= lg_M_AXI_WDATA	;
		lg_M_AXI_WSTRB		<= lg_M_AXI_WSTRB	;
		lg_M_AXI_WVALID     <= lg_M_AXI_WVALID ;	
	end
end


always@(posedge M_AXI_CLK) begin
	if(!M_AXI_RST_N) begin
		lg_M_AXI_BREADY     <='d0;
	end
	else if(lg_b_active) begin
		lg_M_AXI_BREADY     <='d0;		
	end	
	else if(lg_w_active) begin
		lg_M_AXI_BREADY     <='d1;
	end
	else begin
		lg_M_AXI_BREADY     <=lg_M_AXI_BREADY;
	end
end

always@(posedge M_AXI_CLK) begin
	if(!M_AXI_RST_N) begin
		lg_M_AXI_ARADDR	    <= 'd0;
		lg_M_AXI_ARPROT     <= 'd0;
		lg_M_AXI_ARVALID  	<= 'd0;	
	end
	else if(lg_ar_active) begin
		lg_M_AXI_ARADDR	    <= 'd0;
		lg_M_AXI_ARPROT     <= 'd0;
		lg_M_AXI_ARVALID  	<= 'd0;		
	end	
	else if(lg_fifo_araddr_rd_en_d1) begin
		lg_M_AXI_ARADDR	    <= lg_fifo_araddr_dout;
		lg_M_AXI_ARPROT     <= 'd0;
		lg_M_AXI_ARVALID  	<= 'd1;		
	end
	else begin
		lg_M_AXI_ARADDR	    <= lg_M_AXI_ARADDR		;
		lg_M_AXI_ARPROT     <= lg_M_AXI_ARPROT     ;
		lg_M_AXI_ARVALID  	<= lg_M_AXI_ARVALID    ;		
	end
end

always@(posedge M_AXI_CLK) begin
	if(!M_AXI_RST_N) begin
		lg_M_AXI_RREADY     <='d0;
	end
	else if(lg_r_active) begin
		lg_M_AXI_RREADY     <='d0;		
	end	
	else if(lg_ar_active) begin
		lg_M_AXI_RREADY     <='d1;
	end
	else begin
		lg_M_AXI_RREADY     <=lg_M_AXI_RREADY;
	end
end

always@(posedge M_AXI_CLK) begin
	lg_rdata		        <= M_AXI_RDATA			;
	lg_rresp		        <= M_AXI_RRESP          ;
	lg_rdata_vld	        <= M_AXI_RVALID  	    ;
end

endmodule

TB如下:

`timescale 1ns / 1ps

module tb_axi_master();


logic clk=0;
logic rst_n=0;

initial begin
	#1000;
	rst_n = 1;
end

always #(1000/100/2) clk = ~clk;

// ==================================================
// ==================================================
// ==================================================
parameter P_AXI_ADDR_WIDTH =32;
parameter P_AXI_DATA_WIDTH =32;
logic 							M_AXI_CLK			;
logic 							M_AXI_RST_N         ;
logic [P_AXI_ADDR_WIDTH - 1:0]	M_SLAVE_BASE_ADDR   ;
logic [P_AXI_ADDR_WIDTH - 1:0]	M_AXI_AWADDR	    ;
logic [2 : 0]	                M_AXI_AWPROT        ;
logic 	                        M_AXI_AWVALID       ;
logic 	                        M_AXI_AWREADY       ;
logic [P_AXI_DATA_WIDTH - 1:0]	M_AXI_WDATA		    ;
logic [P_AXI_DATA_WIDTH/8 - 1:0]M_AXI_WSTRB 	    ;
logic 	                        M_AXI_WVALID	    ;
logic 	                        M_AXI_WREADY	    ;
logic [1:0]	                    M_AXI_BRESP		    ;
logic 	                        M_AXI_BVALID        ;
logic 	                        M_AXI_BREADY        ;
logic [P_AXI_ADDR_WIDTH - 1:0]	M_AXI_ARADDR	    ;
logic [2 : 0]	                M_AXI_ARPROT        ;
logic 	                        M_AXI_ARVALID       ;
logic 	                        M_AXI_ARREADY       ;
logic [P_AXI_DATA_WIDTH - 1:0]	M_AXI_RDATA		    ;
logic [1:0]	                    M_AXI_RRESP         ;
logic 	                        M_AXI_RVALID        ;
logic 	                        M_AXI_RREADY        ;
logic [P_AXI_ADDR_WIDTH - 1:0]	lg_i_waddr			;
logic [P_AXI_DATA_WIDTH - 1:0]	lg_i_wdata          ;
logic 							lg_i_wdata_vld      ;
logic [P_AXI_ADDR_WIDTH - 1:0]	lg_i_raddr			;
logic 							lg_i_raddr_vld      ;
logic [P_AXI_DATA_WIDTH - 1:0]	lg_o_rdata          ;
logic [1:0]						lg_o_rresp			;
logic 							lg_o_rdata_vld		;

axi_master_driver#(
.P_AXI_ADDR_WIDTH(P_AXI_ADDR_WIDTH),                                                                     
.P_AXI_DATA_WIDTH(P_AXI_DATA_WIDTH)
)
axi_master_driver(
	.M_AXI_CLK     			(clk	),                                                                
	.M_AXI_RST_N            (rst_n	),                                                         
	.M_SLAVE_BASE_ADDR      (32'd0   	 ),                                                               
	.M_AXI_AWADDR           (M_AXI_AWADDR        ),                                                          
	.M_AXI_AWPROT           (M_AXI_AWPROT        ),                                                          
	.M_AXI_AWVALID          (M_AXI_AWVALID       ),                                                           
	.M_AXI_AWREADY          (M_AXI_AWREADY       ),                                                           
	.M_AXI_WDATA            (M_AXI_WDATA         ),                                                         
	.M_AXI_WSTRB            (M_AXI_WSTRB         ),                                                         
	.M_AXI_WVALID           (M_AXI_WVALID        ),                                                          
	.M_AXI_WREADY           (M_AXI_WREADY        ),                                                          
	.M_AXI_BRESP            (M_AXI_BRESP         ),                                                         
	.M_AXI_BVALID           (M_AXI_BVALID        ),                                                          
	.M_AXI_BREADY           (M_AXI_BREADY        ),                                                          
	.M_AXI_ARADDR           (M_AXI_ARADDR        ),                                                          
	.M_AXI_ARPROT           (M_AXI_ARPROT        ),                                                          
	.M_AXI_ARVALID          (M_AXI_ARVALID       ),                                                           
	.M_AXI_ARREADY          (M_AXI_ARREADY       ),                                                           
	.M_AXI_RDATA            (M_AXI_RDATA         ),                                                         
	.M_AXI_RRESP            (M_AXI_RRESP         ),                                                         
	.M_AXI_RVALID           (M_AXI_RVALID        ),                                                          
	.M_AXI_RREADY           (M_AXI_RREADY        ),                                                          
	.i_awaddr               (lg_i_waddr          ),                                                     
	.i_wdata                (lg_i_wdata          ),                                                     
	.i_wdata_vld            (lg_i_wdata_vld      ),                                                         
	.i_raddr                (lg_i_raddr          ),                                                     
	.i_raddr_vld            (lg_i_raddr_vld      ),                                                         
	.o_rdata                (lg_o_rdata          ),                                                     
	.o_rresp                (lg_o_rresp          ),                                                     
	.o_rdata_vld            (lg_o_rdata_vld      )
);

	axi_slaver_v1_0_S00_AXI # ( 
		.C_S_AXI_DATA_WIDTH(32),
		.C_S_AXI_ADDR_WIDTH(32)
	) axi_slaver_v1_0_S00_AXI_inst (
		.S_AXI_ACLK   (clk				),			
		.S_AXI_ARESETN(rst_n            ),
		.S_AXI_AWADDR (M_AXI_AWADDR   	),				
		.S_AXI_AWPROT (M_AXI_AWPROT     ),
		.S_AXI_AWVALID(M_AXI_AWVALID    ),
		.S_AXI_AWREADY(M_AXI_AWREADY    ),
		.S_AXI_WDATA  (M_AXI_WDATA      ),
		.S_AXI_WSTRB  (M_AXI_WSTRB      ),
		.S_AXI_WVALID (M_AXI_WVALID     ),
		.S_AXI_WREADY (M_AXI_WREADY     ),
		.S_AXI_BRESP  (M_AXI_BRESP      ),
		.S_AXI_BVALID (M_AXI_BVALID     ),
		.S_AXI_BREADY (M_AXI_BREADY     ),
		.S_AXI_ARADDR (M_AXI_ARADDR     ),
		.S_AXI_ARPROT (M_AXI_ARPROT     ),
		.S_AXI_ARVALID(M_AXI_ARVALID    ),
		.S_AXI_ARREADY(M_AXI_ARREADY    ),
		.S_AXI_RDATA  (M_AXI_RDATA      ),
		.S_AXI_RRESP  (M_AXI_RRESP      ),
		.S_AXI_RVALID (M_AXI_RVALID     ),
		.S_AXI_RREADY (M_AXI_RREADY     )
	);
logic [31:0] data;
initial begin
	lg_i_waddr     	=0;
	lg_i_wdata     	=0;
	lg_i_wdata_vld 	=0;
	lg_i_raddr     	=0;
	lg_i_raddr_vld 	=0;
	data			=0;
	wait(rst_n);
	write_task(36,'h0000_0001);
	#100;
	write_task(36,'h0000_0000);
	write_task(12,'h5555_FFFF);
	write_task(16,'h5555_FFFF);
	write_task(20,'h5555_FFFF);
	rd_task('d24);
	rd_task('d28);
	write_task(32,'h5555_6666);
	rd_task('d32);
end
	
// ====================== task ==============================

task write_task(input [31:0] awaddr,input [31:0] wdata);
	begin:write_data
		@(posedge clk) begin
			lg_i_waddr     <= 'd0;
			lg_i_wdata     <= 'd0;
			lg_i_wdata_vld <= 'd0;
		end
		@(posedge clk) begin
			lg_i_waddr     <= awaddr;
			lg_i_wdata     <= wdata;
			lg_i_wdata_vld <= 'd1;
		end
		@(posedge clk) begin
			lg_i_waddr     <= 'd0;
			lg_i_wdata     <= 'd0;
			lg_i_wdata_vld <= 'd0;
		end
	end
endtask	

task rd_task(input [31:0] araddr);
	begin:rd_data
		@(posedge clk) begin
			lg_i_raddr     <= 'd0;
			lg_i_raddr_vld <= 'd0;
		end
		@(posedge clk) begin
			lg_i_raddr     <= araddr;
			lg_i_raddr_vld <= 'd1;
		end
		@(posedge clk) begin
			lg_i_raddr     <= 'd0;
			lg_i_raddr_vld <= 'd0;
		end
	end
endtask	
endmodule

这里有一个写代码的技巧:
如果想实现一个时序如下:只想在run开始后,拉高一个使能一个周期
在这里插入图片描述
那么,可以这么写代码:

// (!lg_fifo_awaddr_empty)最为run的触发信号,en想拉高一拍,则en的触发信号使用run的触发信号+run的取反  =》 可以得到en和run同时拉高,且en只拉高一拍
always@(posedge M_AXI_CLK) begin
	if(M_AXI_RST_N == 1'b0)	
		lg_wr_run <= 'd0;
	else if(!lg_fifo_awaddr_empty)
		lg_wr_run <= 'd1;
	else
		lg_wr_run <= lg_wr_run;
end

always@(posedge M_AXI_CLK) begin
	if(M_AXI_RST_N == 1'b0)	
		lg_fifo_awaddr_rd_en <= 'd0;
	else if(lg_aw_active)
		lg_fifo_awaddr_rd_en <= 'd0;
	else if(!lg_fifo_awaddr_empty & !lg_wr_run)
		lg_fifo_awaddr_rd_en <= 'd1;
	else
		lg_fifo_awaddr_rd_en <= 'd0;
end

1.1 FIFO

这里再做一个FIFO的扩展,FIFO用的确实很多,这里再对FIFO的时序做一个巩固。

我这里FIFO的IP配置如下:
在这里插入图片描述
例化如下:

fifo_axi_master_32x32 fifo_axi_master_aw (
  .clk        (M_AXI_CLK           			    ),
  .din        (i_awaddr       	                ),     
  .wr_en      (i_wdata_vld                      ),  
  .rd_en      (lg_fifo_awaddr_rd_en             ),  			 
  .dout       (lg_fifo_awaddr_dout              ),            
  .full       (lg_fifo_awaddr_full              ),        
  .almost_full(lg_fifo_awaddr_almost_full       ),  
  .empty      (lg_fifo_awaddr_empty             ),  			 
  .valid      (lg_fifo_awaddr_valid             ),
  .data_count (lg_fifo_awaddr_data_count		),
  .prog_full  (lg_fifo_aw_prog_full				)     
);

在这个代码运行过程中,针对FIFO信号的各个关键时序进行说明;
在这里插入图片描述
从时序上看,当写入或者读出数据,empty count dout都是在下一个时钟周期进行更新

接着,我尝试只写不读,看看pfull和afull和full的关系(我这里设置fifo的深度为32),时序如下:
在这里插入图片描述
我这里使用count计数是和数据的写入是同步的,当采集到31时(fifo里面已经有了31个数据),且在写数据,那么此时full拉高,下一个时钟周期,才能读到full,这样会存在反压失败的情况。

对于afull和pfull(我这设置为29),分别为当写为31个数据时afull会拉高(采样到vld拉高之后拉高,即会延迟一拍),当写入29个数据时pfull会拉高(采样到vld拉高之后拉高,即会延迟一拍).

关于反压不丢数,可以看我另外一篇博客:
FPGA FIFO系列 - FIFO使用中需要注意的若干问题

二 AXI-LITE 从机

关于从机,可以直接用VIVADO提供的代码:
只需要关注下axi_araddr和axi_awaddr两个信号里面地址需要修改一下就好了。此外对于外部的写入和读取,就按照需要的进行修改即可


`timescale 1 ns / 1 ps

	module axi_slaver_v1_0_S00_AXI #
	(
		// Users to add parameters here

		// User parameters ends
		// Do not modify the parameters beyond this line

		// Width of S_AXI data bus
		parameter integer C_S_AXI_DATA_WIDTH	= 32,
		// Width of S_AXI address bus
		parameter integer C_S_AXI_ADDR_WIDTH	= 8
	)
	(
		// Users to add ports here

		// User ports ends
		// Do not modify the ports beyond this line

		// Global Clock Signal
		input wire  S_AXI_ACLK,
		// Global Reset Signal. This Signal is Active LOW
		input wire  S_AXI_ARESETN,
		// Write address (issued by master, acceped by Slave)
		input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_AWADDR,
		// Write channel Protection type. This signal indicates the
    		// privilege and security level of the transaction, and whether
    		// the transaction is a data access or an instruction access.
		input wire [2 : 0] S_AXI_AWPROT,
		// Write address valid. This signal indicates that the master signaling
    		// valid write address and control information.
		input wire  S_AXI_AWVALID,
		// Write address ready. This signal indicates that the slave is ready
    		// to accept an address and associated control signals.
		output wire  S_AXI_AWREADY,
		// Write data (issued by master, acceped by Slave) 
		input wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_WDATA,
		// Write strobes. This signal indicates which byte lanes hold
    		// valid data. There is one write strobe bit for each eight
    		// bits of the write data bus.    
		input wire [(C_S_AXI_DATA_WIDTH/8)-1 : 0] S_AXI_WSTRB,
		// Write valid. This signal indicates that valid write
    		// data and strobes are available.
		input wire  S_AXI_WVALID,
		// Write ready. This signal indicates that the slave
    		// can accept the write data.
		output wire  S_AXI_WREADY,
		// Write response. This signal indicates the status
    		// of the write transaction.
		output wire [1 : 0] S_AXI_BRESP,
		// Write response valid. This signal indicates that the channel
    		// is signaling a valid write response.
		output wire  S_AXI_BVALID,
		// Response ready. This signal indicates that the master
    		// can accept a write response.
		input wire  S_AXI_BREADY,
		// Read address (issued by master, acceped by Slave)
		input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_ARADDR,
		// Protection type. This signal indicates the privilege
    		// and security level of the transaction, and whether the
    		// transaction is a data access or an instruction access.
		input wire [2 : 0] S_AXI_ARPROT,
		// Read address valid. This signal indicates that the channel
    		// is signaling valid read address and control information.
		input wire  S_AXI_ARVALID,
		// Read address ready. This signal indicates that the slave is
    		// ready to accept an address and associated control signals.
		output wire  S_AXI_ARREADY,
		// Read data (issued by slave)
		output wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_RDATA,
		// Read response. This signal indicates the status of the
    		// read transfer.
		output wire [1 : 0] S_AXI_RRESP,
		// Read valid. This signal indicates that the channel is
    		// signaling the required read data.
		output wire  S_AXI_RVALID,
		// Read ready. This signal indicates that the master can
    		// accept the read data and response information.
		input wire  S_AXI_RREADY
	);

	// AXI4LITE signals
	reg [C_S_AXI_ADDR_WIDTH-1 : 0] 	axi_awaddr;
	reg  	axi_awready;
	reg  	axi_wready;
	reg [1 : 0] 	axi_bresp;
	reg  	axi_bvalid;
	reg [C_S_AXI_ADDR_WIDTH-1 : 0] 	axi_araddr;
	reg  	axi_arready;
	reg [C_S_AXI_DATA_WIDTH-1 : 0] 	axi_rdata;
	reg [1 : 0] 	axi_rresp;
	reg  	axi_rvalid;

	// Example-specific design signals
	// local parameter for addressing 32 bit / 64 bit C_S_AXI_DATA_WIDTH
	// ADDR_LSB is used for addressing 32/64 bit registers/memories
	// ADDR_LSB = 2 for 32 bits (n downto 2)
	// ADDR_LSB = 3 for 64 bits (n downto 3)
	localparam integer ADDR_LSB = (C_S_AXI_DATA_WIDTH/32) + 1;
	localparam integer OPT_MEM_ADDR_BITS = 5;
	//----------------------------------------------
	//-- Signals for user logic register space example
	//------------------------------------------------
	//-- Number of Slave Registers 64
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg0;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg1;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg2;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg3;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg4;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg5;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg6;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg7;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg8;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg9;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg10;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg11;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg12;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg13;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg14;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg15;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg16;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg17;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg18;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg19;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg20;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg21;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg22;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg23;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg24;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg25;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg26;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg27;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg28;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg29;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg30;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg31;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg32;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg33;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg34;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg35;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg36;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg37;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg38;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg39;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg40;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg41;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg42;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg43;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg44;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg45;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg46;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg47;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg48;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg49;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg50;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg51;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg52;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg53;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg54;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg55;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg56;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg57;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg58;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg59;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg60;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg61;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg62;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg63;
	wire	 slv_reg_rden;
	wire	 slv_reg_wren;
	reg [C_S_AXI_DATA_WIDTH-1:0]	 reg_data_out;
	integer	 byte_index;
	reg	 aw_en;

	// I/O Connections assignments

	assign S_AXI_AWREADY	= axi_awready;
	assign S_AXI_WREADY	= axi_wready;
	assign S_AXI_BRESP	= axi_bresp;
	assign S_AXI_BVALID	= axi_bvalid;
	assign S_AXI_ARREADY	= axi_arready;
	assign S_AXI_RDATA	= axi_rdata;
	assign S_AXI_RRESP	= axi_rresp;
	assign S_AXI_RVALID	= axi_rvalid;
	// Implement axi_awready generation
	// axi_awready is asserted for one S_AXI_ACLK clock cycle when both
	// S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_awready is
	// de-asserted when reset is low.
// 严格1对1关系,所以需要aw和w通道同时拉高(AXI_FULL因为是突发传输,所以就不会对齐(只发一个地址,后面都是突发递增))

// 给出ready,其实这时已经采集到了;主机实在ready之后才释放vld
	always @( posedge S_AXI_ACLK )
	begin
	  if ( S_AXI_ARESETN == 1'b0 )
	    begin
	      axi_awready <= 1'b0;
	      aw_en <= 1'b1;
	    end 
	  else
	    begin    // 防止连续写两个地址,因此引入 aw_en; aw_en 决定当前是否写完,知道响应握手成功
	      if (~axi_awready && S_AXI_AWVALID && S_AXI_WVALID && aw_en) // 拉高一个周期的方式,前置拉高条件+拉高后取反条件;拉高时机就是和采集和条件是同一拍
	        begin
	          // slave is ready to accept write address when 
	          // there is a valid write address and write data
	          // on the write address and data bus. This design 
	          // expects no outstanding transactions. 
	          axi_awready <= 1'b1;
	          aw_en <= 1'b0;
	        end
	        else if (S_AXI_BREADY && axi_bvalid)
	            begin
	              aw_en <= 1'b1;
	              axi_awready <= 1'b0;
	            end
	      else           
	        begin
	          axi_awready <= 1'b0;
	        end
	    end 
	end       

	// Implement axi_awaddr latching
	// This process is used to latch the address when both 
	// S_AXI_AWVALID and S_AXI_WVALID are valid. 
// 这里对AWaddr进行寄存
	always @( posedge S_AXI_ACLK )
	begin
	  if ( S_AXI_ARESETN == 1'b0 )
	    begin
	      axi_awaddr <= 0;
	    end 
	  else
	    begin   
	      if (~axi_awready && S_AXI_AWVALID && S_AXI_WVALID && aw_en)
	        begin
	          // Write Address latching 
	          axi_awaddr <= S_AXI_AWADDR;
	        end
	    end 
	end       

	// Implement axi_wready generation
	// axi_wready is asserted for one S_AXI_ACLK clock cycle when both
	// S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_wready is 
	// de-asserted when reset is low. 
// 类似的对wready进行同步给出
	always @( posedge S_AXI_ACLK )
	begin
	  if ( S_AXI_ARESETN == 1'b0 )
	    begin
	      axi_wready <= 1'b0;
	    end 
	  else
	    begin    
	      if (~axi_wready && S_AXI_WVALID && S_AXI_AWVALID && aw_en )
	        begin
	          // slave is ready to accept write data when 
	          // there is a valid write address and write data
	          // on the write address and data bus. This design 
	          // expects no outstanding transactions. 
	          axi_wready <= 1'b1;
	        end
	      else
	        begin
	          axi_wready <= 1'b0;
	        end
	    end 
	end       

	// Implement memory mapped register select and write logic generation
	// The write data is accepted and written to memory mapped registers when
	// axi_awready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted. Write strobes are used to
	// select byte enables of slave registers while writing.
	// These registers are cleared when reset (active low) is applied.
	// Slave register write enable is asserted when valid address and data are available
	// and the slave is ready to accept the write address and write data.
	assign slv_reg_wren = axi_wready && S_AXI_WVALID && axi_awready && S_AXI_AWVALID;

	always @( posedge S_AXI_ACLK )
	begin
	  if ( S_AXI_ARESETN == 1'b0 )
	    begin
	      slv_reg0 <= 0;
	      slv_reg1 <= 0;
	      slv_reg2 <= 0;
	      slv_reg3 <= 0;
	      slv_reg4 <= 0;
	      slv_reg5 <= 0;
	      slv_reg6 <= 0;
	      slv_reg7 <= 0;
	      slv_reg8 <= 0;
	      slv_reg9 <= 0;
	      slv_reg10 <= 0;
	      slv_reg11 <= 0;
	      slv_reg12 <= 0;
	      slv_reg13 <= 0;
	      slv_reg14 <= 0;
	      slv_reg15 <= 0;
	      slv_reg16 <= 0;
	      slv_reg17 <= 0;
	      slv_reg18 <= 0;
	      slv_reg19 <= 0;
	      slv_reg20 <= 0;
	      slv_reg21 <= 0;
	      slv_reg22 <= 0;
	      slv_reg23 <= 0;
	      slv_reg24 <= 0;
	      slv_reg25 <= 0;
	      slv_reg26 <= 0;
	      slv_reg27 <= 0;
	      slv_reg28 <= 0;
	      slv_reg29 <= 0;
	      slv_reg30 <= 0;
	      slv_reg31 <= 0;
	      slv_reg32 <= 0;
	      slv_reg33 <= 0;
	      slv_reg34 <= 0;
	      slv_reg35 <= 0;
	      slv_reg36 <= 0;
	      slv_reg37 <= 0;
	      slv_reg38 <= 0;
	      slv_reg39 <= 0;
	      slv_reg40 <= 0;
	      slv_reg41 <= 0;
	      slv_reg42 <= 0;
	      slv_reg43 <= 0;
	      slv_reg44 <= 0;
	      slv_reg45 <= 0;
	      slv_reg46 <= 0;
	      slv_reg47 <= 0;
	      slv_reg48 <= 0;
	      slv_reg49 <= 0;
	      slv_reg50 <= 0;
	      slv_reg51 <= 0;
	      slv_reg52 <= 0;
	      slv_reg53 <= 0;
	      slv_reg54 <= 0;
	      slv_reg55 <= 0;
	      slv_reg56 <= 0;
	      slv_reg57 <= 0;
	      slv_reg58 <= 0;
	      slv_reg59 <= 0;
	      slv_reg60 <= 0;
	      slv_reg61 <= 0;
	      slv_reg62 <= 0;
	      slv_reg63 <= 0;
	    end 
	  else begin
	    if (slv_reg_wren)
	      begin
	        case ( axi_awaddr[5:0] )
	          6'h00:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 0
	                slv_reg0[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h01:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 1
	                slv_reg1[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h02:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 2
	                slv_reg2[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h03:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 3
	                slv_reg3[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h04:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 4
	                slv_reg4[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h05:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 5
	                slv_reg5[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h06:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 6
	                slv_reg6[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h07:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 7
	                slv_reg7[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h08:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 8
	                slv_reg8[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h09:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 9
	                slv_reg9[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h0A:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 10
	                slv_reg10[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h0B:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 11
	                slv_reg11[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h0C:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 12
	                slv_reg12[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h0D:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 13
	                slv_reg13[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h0E:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 14
	                slv_reg14[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h0F:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 15
	                slv_reg15[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h10:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 16
	                slv_reg16[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h11:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 17
	                slv_reg17[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h12:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 18
	                slv_reg18[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h13:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 19
	                slv_reg19[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h14:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 20
	                slv_reg20[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h15:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 21
	                slv_reg21[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h16:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 22
	                slv_reg22[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h17:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 23
	                slv_reg23[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h18:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 24
	                slv_reg24[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h19:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 25
	                slv_reg25[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h1A:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 26
	                slv_reg26[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h1B:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 27
	                slv_reg27[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h1C:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 28
	                slv_reg28[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h1D:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 29
	                slv_reg29[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h1E:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 30
	                slv_reg30[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h1F:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 31
	                slv_reg31[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h20:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 32
	                slv_reg32[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h21:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 33
	                slv_reg33[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h22:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 34
	                slv_reg34[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h23:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 35
	                slv_reg35[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h24:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 36
	                slv_reg36[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h25:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 37
	                slv_reg37[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h26:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 38
	                slv_reg38[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h27:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 39
	                slv_reg39[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h28:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 40
	                slv_reg40[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h29:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 41
	                slv_reg41[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h2A:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 42
	                slv_reg42[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h2B:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 43
	                slv_reg43[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h2C:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 44
	                slv_reg44[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h2D:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 45
	                slv_reg45[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h2E:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 46
	                slv_reg46[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h2F:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 47
	                slv_reg47[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h30:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 48
	                slv_reg48[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h31:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 49
	                slv_reg49[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h32:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 50
	                slv_reg50[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h33:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 51
	                slv_reg51[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h34:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 52
	                slv_reg52[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h35:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 53
	                slv_reg53[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h36:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 54
	                slv_reg54[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h37:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 55
	                slv_reg55[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h38:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 56
	                slv_reg56[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h39:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 57
	                slv_reg57[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h3A:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 58
	                slv_reg58[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h3B:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 59
	                slv_reg59[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h3C:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 60
	                slv_reg60[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h3D:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 61
	                slv_reg61[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h3E:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 62
	                slv_reg62[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h3F:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 63
	                slv_reg63[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          default : begin
	                      slv_reg0 <= slv_reg0;
	                      slv_reg1 <= slv_reg1;
	                      slv_reg2 <= slv_reg2;
	                      slv_reg3 <= slv_reg3;
	                      slv_reg4 <= slv_reg4;
	                      slv_reg5 <= slv_reg5;
	                      slv_reg6 <= slv_reg6;
	                      slv_reg7 <= slv_reg7;
	                      slv_reg8 <= slv_reg8;
	                      slv_reg9 <= slv_reg9;
	                      slv_reg10 <= slv_reg10;
	                      slv_reg11 <= slv_reg11;
	                      slv_reg12 <= slv_reg12;
	                      slv_reg13 <= slv_reg13;
	                      slv_reg14 <= slv_reg14;
	                      slv_reg15 <= slv_reg15;
	                      slv_reg16 <= slv_reg16;
	                      slv_reg17 <= slv_reg17;
	                      slv_reg18 <= slv_reg18;
	                      slv_reg19 <= slv_reg19;
	                      slv_reg20 <= slv_reg20;
	                      slv_reg21 <= slv_reg21;
	                      slv_reg22 <= slv_reg22;
	                      slv_reg23 <= slv_reg23;
	                      slv_reg24 <= slv_reg24;
	                      slv_reg25 <= slv_reg25;
	                      slv_reg26 <= slv_reg26;
	                      slv_reg27 <= slv_reg27;
	                      slv_reg28 <= slv_reg28;
	                      slv_reg29 <= slv_reg29;
	                      slv_reg30 <= slv_reg30;
	                      slv_reg31 <= slv_reg31;
	                      slv_reg32 <= slv_reg32;
	                      slv_reg33 <= slv_reg33;
	                      slv_reg34 <= slv_reg34;
	                      slv_reg35 <= slv_reg35;
	                      slv_reg36 <= slv_reg36;
	                      slv_reg37 <= slv_reg37;
	                      slv_reg38 <= slv_reg38;
	                      slv_reg39 <= slv_reg39;
	                      slv_reg40 <= slv_reg40;
	                      slv_reg41 <= slv_reg41;
	                      slv_reg42 <= slv_reg42;
	                      slv_reg43 <= slv_reg43;
	                      slv_reg44 <= slv_reg44;
	                      slv_reg45 <= slv_reg45;
	                      slv_reg46 <= slv_reg46;
	                      slv_reg47 <= slv_reg47;
	                      slv_reg48 <= slv_reg48;
	                      slv_reg49 <= slv_reg49;
	                      slv_reg50 <= slv_reg50;
	                      slv_reg51 <= slv_reg51;
	                      slv_reg52 <= slv_reg52;
	                      slv_reg53 <= slv_reg53;
	                      slv_reg54 <= slv_reg54;
	                      slv_reg55 <= slv_reg55;
	                      slv_reg56 <= slv_reg56;
	                      slv_reg57 <= slv_reg57;
	                      slv_reg58 <= slv_reg58;
	                      slv_reg59 <= slv_reg59;
	                      slv_reg60 <= slv_reg60;
	                      slv_reg61 <= slv_reg61;
	                      slv_reg62 <= slv_reg62;
	                      slv_reg63 <= slv_reg63;
	                    end
	        endcase
	      end
	  end
	end    

	// Implement write response logic generation
	// The write response and response valid signals are asserted by the slave 
	// when axi_wready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted.  
	// This marks the acceptance of address and indicates the status of 
	// write transaction.

	always @( posedge S_AXI_ACLK )
	begin
	  if ( S_AXI_ARESETN == 1'b0 )
	    begin
	      axi_bvalid  <= 0;
	      axi_bresp   <= 2'b0;
	    end 
	  else
	    begin    
	      if (axi_awready && S_AXI_AWVALID && ~axi_bvalid && axi_wready && S_AXI_WVALID)
	        begin
	          // indicates a valid write response is available
	          axi_bvalid <= 1'b1;
	          axi_bresp  <= 2'b0; // 'OKAY' response 
	        end                   // work error responses in future
	      else
	        begin
	          if (S_AXI_BREADY && axi_bvalid) 
	            //check if bready is asserted while bvalid is high) 
	            //(there is a possibility that bready is always asserted high)   
	            begin
	              axi_bvalid <= 1'b0; 
	            end  
	        end
	    end
	end   

	// Implement axi_arready generation
	// axi_arready is asserted for one S_AXI_ACLK clock cycle when
	// S_AXI_ARVALID is asserted. axi_awready is 
	// de-asserted when reset (active low) is asserted. 
	// The read address is also latched when S_AXI_ARVALID is 
	// asserted. axi_araddr is reset to zero on reset assertion.

	always @( posedge S_AXI_ACLK )
	begin
	  if ( S_AXI_ARESETN == 1'b0 )
	    begin
	      axi_arready <= 1'b0;
	      axi_araddr  <= 32'b0;
	    end 
	  else
	    begin    
	      if (~axi_arready && S_AXI_ARVALID)
	        begin
	          // indicates that the slave has acceped the valid read address
	          axi_arready <= 1'b1;
	          // Read address latching
	          axi_araddr  <= S_AXI_ARADDR;
	        end
	      else
	        begin
	          axi_arready <= 1'b0;
	        end
	    end 
	end       

	// Implement axi_arvalid generation
	// axi_rvalid is asserted for one S_AXI_ACLK clock cycle when both 
	// S_AXI_ARVALID and axi_arready are asserted. The slave registers 
	// data are available on the axi_rdata bus at this instance. The 
	// assertion of axi_rvalid marks the validity of read data on the 
	// bus and axi_rresp indicates the status of read transaction.axi_rvalid 
	// is deasserted on reset (active low). axi_rresp and axi_rdata are 
	// cleared to zero on reset (active low).  
	always @( posedge S_AXI_ACLK )
	begin
	  if ( S_AXI_ARESETN == 1'b0 )
	    begin
	      axi_rvalid <= 0;
	      axi_rresp  <= 0;
	    end 
	  else
	    begin    
	      if (axi_arready && S_AXI_ARVALID && ~axi_rvalid)
	        begin
	          // Valid read data is available at the read data bus
	          axi_rvalid <= 1'b1;
	          axi_rresp  <= 2'b0; // 'OKAY' response
	        end   
	      else if (axi_rvalid && S_AXI_RREADY)
	        begin
	          // Read data is accepted by the master
	          axi_rvalid <= 1'b0;
	        end                
	    end
	end    

	// Implement memory mapped register select and read logic generation
	// Slave register read enable is asserted when valid address is available
	// and the slave is ready to accept the read address.
	assign slv_reg_rden = axi_arready & S_AXI_ARVALID & ~axi_rvalid;
	always @(*)
	begin
	      // Address decoding for reading registers
	      case ( axi_araddr[5:0] )
	        6'h00   : reg_data_out <= slv_reg0;
	        6'h01   : reg_data_out <= slv_reg1;
	        6'h02   : reg_data_out <= slv_reg2;
	        6'h03   : reg_data_out <= slv_reg3;
	        6'h04   : reg_data_out <= slv_reg4;
	        6'h05   : reg_data_out <= slv_reg5;
	        6'h06   : reg_data_out <= slv_reg6;
	        6'h07   : reg_data_out <= slv_reg7;
	        6'h08   : reg_data_out <= slv_reg8;
	        6'h09   : reg_data_out <= slv_reg9;
	        6'h0A   : reg_data_out <= slv_reg10;
	        6'h0B   : reg_data_out <= slv_reg11;
	        6'h0C   : reg_data_out <= slv_reg12;
	        6'h0D   : reg_data_out <= slv_reg13;
	        6'h0E   : reg_data_out <= slv_reg14;
	        6'h0F   : reg_data_out <= slv_reg15;
	        6'h10   : reg_data_out <= slv_reg16;
	        6'h11   : reg_data_out <= slv_reg17;
	        6'h12   : reg_data_out <= slv_reg18;
	        6'h13   : reg_data_out <= slv_reg19;
	        6'h14   : reg_data_out <= slv_reg20;
	        6'h15   : reg_data_out <= slv_reg21;
	        6'h16   : reg_data_out <= slv_reg22;
	        6'h17   : reg_data_out <= slv_reg23;
	        6'h18   : reg_data_out <= slv_reg24;
	        6'h19   : reg_data_out <= slv_reg25;
	        6'h1A   : reg_data_out <= slv_reg26;
	        6'h1B   : reg_data_out <= slv_reg27;
	        6'h1C   : reg_data_out <= slv_reg28;
	        6'h1D   : reg_data_out <= slv_reg29;
	        6'h1E   : reg_data_out <= slv_reg30;
	        6'h1F   : reg_data_out <= slv_reg31;
	        6'h20   : reg_data_out <= slv_reg32;
	        6'h21   : reg_data_out <= slv_reg33;
	        6'h22   : reg_data_out <= slv_reg34;
	        6'h23   : reg_data_out <= slv_reg35;
	        6'h24   : reg_data_out <= slv_reg36;
	        6'h25   : reg_data_out <= slv_reg37;
	        6'h26   : reg_data_out <= slv_reg38;
	        6'h27   : reg_data_out <= slv_reg39;
	        6'h28   : reg_data_out <= slv_reg40;
	        6'h29   : reg_data_out <= slv_reg41;
	        6'h2A   : reg_data_out <= slv_reg42;
	        6'h2B   : reg_data_out <= slv_reg43;
	        6'h2C   : reg_data_out <= slv_reg44;
	        6'h2D   : reg_data_out <= slv_reg45;
	        6'h2E   : reg_data_out <= slv_reg46;
	        6'h2F   : reg_data_out <= slv_reg47;
	        6'h30   : reg_data_out <= slv_reg48;
	        6'h31   : reg_data_out <= slv_reg49;
	        6'h32   : reg_data_out <= slv_reg50;
	        6'h33   : reg_data_out <= slv_reg51;
	        6'h34   : reg_data_out <= slv_reg52;
	        6'h35   : reg_data_out <= slv_reg53;
	        6'h36   : reg_data_out <= slv_reg54;
	        6'h37   : reg_data_out <= slv_reg55;
	        6'h38   : reg_data_out <= slv_reg56;
	        6'h39   : reg_data_out <= slv_reg57;
	        6'h3A   : reg_data_out <= slv_reg58;
	        6'h3B   : reg_data_out <= slv_reg59;
	        6'h3C   : reg_data_out <= slv_reg60;
	        6'h3D   : reg_data_out <= slv_reg61;
	        6'h3E   : reg_data_out <= slv_reg62;
	        6'h3F   : reg_data_out <= slv_reg63;
	        default : reg_data_out <= 0;
	      endcase
	end

	// Output register or memory read data
	always @( posedge S_AXI_ACLK )
	begin
	  if ( S_AXI_ARESETN == 1'b0 )
	    begin
	      axi_rdata  <= 0;
	    end 
	  else
	    begin    
	      // When there is a valid read address (S_AXI_ARVALID) with 
	      // acceptance of read address by the slave (axi_arready), 
	      // output the read dada 
	      if (slv_reg_rden)
	        begin
	          axi_rdata <= reg_data_out;     // register read data
	        end   
	    end
	end    

	// Add user logic here

	// User logic ends

	endmodule

工程链接:
工程

相关文章:

  • 环境变量 PATH 与可执行文件识别机制详解
  • 数据倾斜定义以及在Spark中如何处理数据倾斜问题
  • 14. Docker 轻量级可视化工具 Portainer(的详细安装步骤+常规使用详细说明)
  • PyQt加载UI文件
  • x86平台基于Qt+opengl优化ffmpeg软解码1080P视频渲染效率
  • 【GoLang】【算法模板】2、GoLang 算法模板整理
  • Java包装类泛型编程
  • Sa-Token 根据官方文档简单实现登录认证的示例
  • 认识 ADB(Android Debug Bridge,Android SDK 中的一个工具)
  • 排序与算法:插入排序
  • mapbox基础,使用geojson加载line线图层,实现纯色填充、图片填充、虚线和渐变效果
  • 【Qt】Q_OBJECT无法用在模版类中的原因和解决方法
  • GPT-2 大模型
  • 本地部署DeepSeek
  • 提升接口性能之缓存
  • 分治-归并排序
  • 反射和特性
  • Annie导航2.0 新增加5个模版 开源免授权
  • 当机器人遇见艺术:春晚机器人舞蹈,一场科技与艺术的完美邂逅
  • Redis实现登录优化
  • 把中国声音带向世界,DG和Blue Note落户中国
  • 奥运“四朝元老”华天回国参赛,伤势未愈谨慎出战全国锦标赛
  • 125%→10%、24%税率暂停90天,对美关税开始调整
  • 跨文化戏剧的拓荒者与传承者——洪深与复旦剧社的百年回响
  • 乌拉圭前总统何塞·穆希卡去世
  • “一码难求”的Manus开放注册但价格不菲,智能体距离“实用”还有多远