当前位置: 首页 > news >正文

省赛中药检测模型调优

目录

  • 一、baseline性能
  • 二、baseline+ DETR head
  • 三、baseline+ RepC3K2
  • 四、baseline+ RepC3K2 + SimSPPF
  • 五、baseline+ RepC3K2 + SimSPPF + LK-C2PSA
  • 六、baseline+ RepC3K2 + SimSPPF + ~~LK-C2PSA~~ TriAttentionPSA
  • 界面
  • 最后一步:量化,格式导出,稳定性测试
  • 后勤:
  • 总结


在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

一、baseline性能

Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size120/120      6.91G      1.374      1.145      1.657          3        832: 100%|██████████| 482/482 [00:20<00:00, 23.48it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 32/32 [00:01<00:00, 19.14it/s]all       1005       2152      0.782      0.739      0.811      0.474120 epochs completed in 0.792 hours.
Optimizer stripped from runs/ChineseMedTrain/exp8/weights/last.pt, 5.5MB
Optimizer stripped from runs/ChineseMedTrain/exp8/weights/best.pt, 5.5MBValidating runs/ChineseMedTrain/exp8/weights/best.pt...
Ultralytics 8.3.7 🚀 Python-3.9.19 torch-2.0.1+cu117 CUDA:0 (NVIDIA GeForce RTX 4090, 24209MiB)
YOLO11n summary (fused): 238 layers, 2,591,902 parameters, 0 gradients, 6.4 GFLOPsClass     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 32/32 [00:02<00:00, 15.02it/s]all       1005       2152      0.788      0.735      0.811      0.474ginseng         34         57      0.869      0.772      0.864      0.483Leech         20         41      0.778      0.769      0.847      0.513JujubaeFructus         18         67      0.829      0.761       0.86      0.491LiliiBulbus         18         19       0.64      0.789      0.835      0.552CoptidisRhizoma         22         22      0.868      0.898       0.96      0.758MumeFructus         21         98      0.716      0.693      0.756      0.372MagnoliaBark         21         45      0.737      0.746      0.814      0.416Oyster         18         24      0.735      0.809      0.846      0.595Seahorse         14         33      0.835      0.424      0.493      0.274Luohanguo         17         21      0.834      0.714      0.793      0.593GlycyrrhizaUralensis         18         25       0.92       0.92      0.978      0.502Sanqi         32         42      0.753      0.714      0.761      0.544TetrapanacisMedulla         19         20      0.859      0.915      0.977      0.622CoicisSemen         24         35       0.88      0.628      0.823      0.492LyciiFructus         20         32      0.829      0.562      0.772      0.411TruestarAnise         18         60      0.853      0.679      0.894      0.376ClamShell         17         67      0.699      0.746      0.765      0.466Chuanxiong         28         69      0.782      0.623      0.766      0.372Garlic         24         70      0.801      0.748      0.793      0.341GinkgoBiloba         27        119      0.767      0.807      0.859      0.532ChrysanthemiFlos         13         20      0.786        0.7      0.734      0.436
AtractylodesMacrocephala         15         23      0.807      0.909      0.886      0.576JuglandisSemen         12         45       0.87      0.448      0.689      0.332TallGastrodiae         17         35      0.577       0.74      0.689      0.339TrionycisCarapax         15         22      0.666      0.636      0.749      0.515AngelicaRoot         18         35       0.78      0.886       0.89      0.538Hawthorn         21         47      0.683      0.366      0.565      0.253CrociStigma         20         22      0.951      0.874      0.948      0.523SerpentisPeriostracum         16         16      0.864      0.875      0.929      0.598EucommiaBark         17         32      0.844      0.781      0.841      0.484ImperataeRhizoma         21         22      0.904      0.909      0.944      0.579LoniceraJaponica         12         25      0.525      0.531      0.549      0.279Zhizi         20        128      0.806      0.336      0.589      0.242Scorpion         13         21      0.812       0.81      0.867      0.619HouttuyniaeHerba         16         16      0.952          1      0.995      0.596EupolyphagaSinensis         19         48      0.641      0.875      0.856      0.509OroxylumIndicum         31         67      0.827      0.821      0.886      0.458CurcumaLonga         34         63      0.718      0.726      0.738      0.444NelumbinisPlumula         17         20      0.797        0.7      0.748      0.458ArecaeSemen         22         66      0.668      0.424       0.71      0.352Scolopendra         19         25      0.801        0.6      0.667      0.437MoriFructus         22         64      0.725      0.688      0.687        0.3
FritillariaeCirrhosaeBulbus         24         26      0.747      0.846       0.87      0.561DioscoreaeRhizoma         23         34      0.896      0.757      0.911       0.45CicadaePeriostracum         17         41      0.824      0.927      0.914      0.531PiperCubeba         21         28      0.825      0.821      0.873      0.504BupleuriRadix         22         25      0.814       0.72      0.889      0.499AntelopeHom         18         48      0.771      0.839      0.853      0.556Pangdahai         19         71      0.859      0.769      0.882      0.575NelumbinisSemen         19         51      0.674       0.73      0.764      0.447
Speed: 0.2ms preprocess, 0.3ms inference, 0.0ms loss, 0.3ms postprocess per image
Results saved to runs/ChineseMedTrain/exp8

二、baseline+ DETR head

提醒:在yolo11之后添加RT-DETR会失败;正确的思路是利用RT-DETR作为baseline

经过测试,采用RT-DETR检测头,导致训练速度降低4倍。

三、baseline+ RepC3K2

改进的点:C3K2重参数化 Rep技术;

 Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size120/120      13.9G      1.225      0.874       1.51         45        352: 100%|██████████| 241/241 [00:18<00:00, 12.76it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 16/16 [00:01<00:00,  9.69it/s]all       1005       2152      0.833      0.792      0.854      0.527120 epochs completed in 0.716 hours.
Optimizer stripped from runs/ChineseMedTrain/exp2/weights/last.pt, 5.6MB
Optimizer stripped from runs/ChineseMedTrain/exp2/weights/best.pt, 5.6MBValidating runs/ChineseMedTrain/exp2/weights/best.pt...
WARNING ⚠️ validating an untrained model YAML will result in 0 mAP.
Ultralytics 8.3.7 🚀 Python-3.9.19 torch-2.0.1+cu117 CUDA:0 (NVIDIA GeForce RTX 4090, 24209MiB)
YOLO11RepC3K2 summary (fused): 239 layers, 2,591,902 parameters, 0 gradients, 6.4 GFLOPsClass     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 16/16 [00:02<00:00,  6.57it/s]all       1005       2152      0.833       0.79      0.854      0.527ginseng         34         57      0.859      0.853      0.914      0.581Leech         20         41      0.759      0.845      0.884      0.621JujubaeFructus         18         67      0.891      0.856      0.911      0.545LiliiBulbus         18         19       0.82      0.895      0.898      0.563CoptidisRhizoma         22         22      0.868      0.895       0.97      0.799MumeFructus         21         98      0.747      0.694      0.784      0.408MagnoliaBark         21         45      0.889      0.844      0.906      0.521Oyster         18         24      0.756      0.917      0.929      0.685Seahorse         14         33      0.942      0.489      0.593      0.345Luohanguo         17         21      0.767      0.762      0.777      0.618GlycyrrhizaUralensis         18         25      0.886          1      0.989      0.505Sanqi         32         42      0.735      0.714      0.788      0.586TetrapanacisMedulla         19         20      0.959       0.95      0.993      0.626CoicisSemen         24         35      0.936      0.835      0.922       0.59LyciiFructus         20         32      0.832      0.562      0.715      0.428TruestarAnise         18         60      0.936      0.732      0.939      0.415ClamShell         17         67      0.806      0.672      0.801      0.493Chuanxiong         28         69      0.797      0.783      0.803      0.439Garlic         24         70      0.806      0.643      0.817      0.421GinkgoBiloba         27        119       0.86      0.823      0.899      0.572ChrysanthemiFlos         13         20      0.788       0.75       0.71      0.429
AtractylodesMacrocephala         15         23      0.858      0.826      0.902      0.603JuglandisSemen         12         45      0.906      0.639       0.83      0.395TallGastrodiae         17         35      0.726      0.758      0.799      0.436TrionycisCarapax         15         22      0.782      0.818      0.811      0.601AngelicaRoot         18         35      0.877      0.914      0.909      0.586Hawthorn         21         47      0.873      0.638      0.754      0.374CrociStigma         20         22          1      0.952      0.957      0.541SerpentisPeriostracum         16         16      0.853      0.938      0.966      0.736EucommiaBark         17         32      0.854      0.875      0.913      0.572ImperataeRhizoma         21         22      0.913      0.955       0.95      0.621LoniceraJaponica         12         25      0.547        0.6      0.695      0.331Zhizi         20        128       0.82        0.5      0.685      0.309Scorpion         13         21      0.833      0.857      0.873      0.606HouttuyniaeHerba         16         16      0.951          1      0.995       0.65EupolyphagaSinensis         19         48       0.76      0.958       0.88      0.561OroxylumIndicum         31         67      0.838      0.821      0.932       0.51CurcumaLonga         34         63      0.667      0.698      0.815      0.501NelumbinisPlumula         17         20      0.886        0.7      0.777       0.51ArecaeSemen         22         66      0.879      0.667      0.894      0.455Scolopendra         19         25      0.776       0.64      0.638      0.467MoriFructus         22         64      0.719      0.679      0.677      0.307
FritillariaeCirrhosaeBulbus         24         26      0.736      0.846      0.906      0.641DioscoreaeRhizoma         23         34      0.828      0.847      0.909      0.493CicadaePeriostracum         17         41      0.828      0.937      0.914      0.581PiperCubeba         21         28       0.92      0.821      0.869      0.576BupleuriRadix         22         25      0.938        0.8      0.924      0.507AntelopeHom         18         48      0.817      0.812      0.911      0.584Pangdahai         19         71      0.869      0.746      0.874      0.583NelumbinisSemen         19         51      0.763      0.759      0.803      0.512
Speed: 0.4ms preprocess, 0.4ms inference, 0.0ms loss, 0.3ms postprocess per image
Results saved to runs/ChineseMedTrain/exp2

四、baseline+ RepC3K2 + SimSPPF

改进的点:SimSPPF简化SPPF模块;

engine/trainer: task=detect, mode=train, model=yolo11RepC3K2SimSPPF.yaml, data=ultralytics/cfg/datasets/originalChineseMed50.yaml, epochs=120, time=None, patience=150, batch=32, imgsz=640, save=True, save_period=10, cache=False, device=0, workers=8, project=runs/ChineseMedTrain, name=exp3, exist_ok=False, pretrained=/home/wqt/Projects/yolov11/ultralytics/runs/ChineseMedTrain/exp2/weights/best.pt, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=True, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale=True, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=True, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.9, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, bgr=0.0, mosaic=1.0, mixup=0.2, copy_paste=0.0, copy_paste_mode=flip, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, save_dir=runs/ChineseMedTrain/exp3
Overriding model.yaml nc=80 with nc=50
WARNING ⚠️ no model scale passed. Assuming scale='n'.from  n    params  module                                       arguments                     0                  -1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]                 1                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]                2                  -1  1      6640  ultralytics.nn.modules.block.RepC3k2         [32, 64, 1, False, 0.25]      3                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]                4                  -1  1     26080  ultralytics.nn.modules.block.RepC3k2         [64, 128, 1, False, 0.25]     5                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]              6                  -1  1     89216  ultralytics.nn.modules.block.RepC3k2         [128, 128, 1, True]           7                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]              8                  -1  1    354560  ultralytics.nn.modules.block.RepC3k2         [256, 256, 1, True]           9                  -1  1    164608  ultralytics.nn.modules.block.SimSPPF         [256, 256, 5]                 
10                  -1  1    249728  ultralytics.nn.modules.block.C2PSA           [256, 256, 1]                 
11                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
12             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
13                  -1  1    111296  ultralytics.nn.modules.block.RepC3k2         [384, 128, 1, False]          
14                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
15             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
16                  -1  1     32096  ultralytics.nn.modules.block.RepC3k2         [256, 64, 1, False]           
17                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]                
18            [-1, 13]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
19                  -1  1     86720  ultralytics.nn.modules.block.RepC3k2         [192, 128, 1, False]          
20                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]              
21            [-1, 10]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
22                  -1  1    387328  ultralytics.nn.modules.block.RepC3k2         [384, 256, 1, True]           
23        [16, 19, 22]  1    440422  ultralytics.nn.modules.head.Detect           [50, [64, 128, 256]]          
YOLO11RepC3K2SimSPPF summary: 360 layers, 2,618,662 parameters, 2,618,646 gradients, 6.5 GFLOPs
      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size120/120      13.8G      1.149     0.7983       1.44         45        352: 100%|██████████| 241/241 [00:19<00:00, 12.35it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 16/16 [00:01<00:00,  9.26it/s]all       1005       2152      0.867      0.799      0.872      0.549120 epochs completed in 0.714 hours.
Optimizer stripped from runs/ChineseMedTrain/exp3/weights/last.pt, 5.6MB
Optimizer stripped from runs/ChineseMedTrain/exp3/weights/best.pt, 5.6MBValidating runs/ChineseMedTrain/exp3/weights/best.pt...
WARNING ⚠️ validating an untrained model YAML will result in 0 mAP.
Ultralytics 8.3.7 🚀 Python-3.9.19 torch-2.0.1+cu117 CUDA:0 (NVIDIA GeForce RTX 4090, 24209MiB)
YOLO11RepC3K2SimSPPF summary (fused): 245 layers, 2,592,286 parameters, 0 gradients, 6.4 GFLOPsClass     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 16/16 [00:02<00:00,  6.30it/s]all       1005       2152      0.867      0.802      0.871      0.549ginseng         34         57      0.888      0.833      0.907      0.587Leech         20         41      0.815      0.902      0.932       0.65JujubaeFructus         18         67      0.904      0.839      0.968      0.585LiliiBulbus         18         19      0.946      0.895        0.9      0.588CoptidisRhizoma         22         22      0.874      0.955      0.984      0.824MumeFructus         21         98      0.746      0.781      0.802      0.411MagnoliaBark         21         45      0.848      0.865      0.932      0.576Oyster         18         24      0.841          1      0.971      0.706Seahorse         14         33      0.835      0.613      0.627       0.37Luohanguo         17         21      0.876      0.667       0.79      0.613GlycyrrhizaUralensis         18         25      0.926      0.995      0.984      0.537Sanqi         32         42      0.908      0.643      0.818      0.625TetrapanacisMedulla         19         20      0.984       0.95      0.987      0.672CoicisSemen         24         35      0.823      0.829      0.907        0.6LyciiFructus         20         32      0.865      0.599      0.758      0.459TruestarAnise         18         60          1      0.678      0.953      0.432ClamShell         17         67      0.806      0.731      0.841      0.538Chuanxiong         28         69      0.775      0.768      0.796      0.427Garlic         24         70      0.848      0.715      0.858      0.435GinkgoBiloba         27        119      0.847      0.866      0.914       0.61ChrysanthemiFlos         13         20      0.937      0.745      0.788      0.488
AtractylodesMacrocephala         15         23      0.826      0.828      0.893      0.614JuglandisSemen         12         45      0.912      0.694      0.785      0.389TallGastrodiae         17         35       0.75      0.743      0.764      0.408TrionycisCarapax         15         22      0.866      0.818      0.865       0.61AngelicaRoot         18         35      0.894      0.914      0.904      0.582Hawthorn         21         47      0.979       0.66      0.766      0.434CrociStigma         20         22       0.91      0.864      0.934      0.529SerpentisPeriostracum         16         16      0.974      0.938      0.988      0.727EucommiaBark         17         32      0.942      0.812      0.942      0.629ImperataeRhizoma         21         22      0.879      0.909      0.974      0.653LoniceraJaponica         12         25      0.779      0.565      0.707      0.383Zhizi         20        128      0.923      0.563      0.765      0.355Scorpion         13         21      0.845      0.905      0.935      0.679HouttuyniaeHerba         16         16      0.846      0.938      0.986      0.662EupolyphagaSinensis         19         48      0.757      0.976      0.924       0.62OroxylumIndicum         31         67       0.82      0.885      0.872      0.474CurcumaLonga         34         63      0.836       0.73      0.857      0.521NelumbinisPlumula         17         20      0.708        0.7      0.778      0.514ArecaeSemen         22         66      0.942      0.745      0.923      0.471Scolopendra         19         25      0.878       0.64      0.669      0.471MoriFructus         22         64       0.77      0.719      0.758      0.355
FritillariaeCirrhosaeBulbus         24         26      0.841      0.885      0.936       0.65DioscoreaeRhizoma         23         34      0.846      0.811      0.919      0.528CicadaePeriostracum         17         41      0.865      0.951      0.931      0.636PiperCubeba         21         28      0.865      0.857       0.91      0.579BupleuriRadix         22         25          1      0.739      0.907      0.557AntelopeHom         18         48      0.929      0.771      0.899      0.623Pangdahai         19         71      0.872      0.861      0.897      0.603NelumbinisSemen         19         51      0.787      0.804      0.761      0.473
Speed: 0.3ms preprocess, 0.4ms inference, 0.0ms loss, 0.3ms postprocess per image
Results saved to runs/ChineseMedTrain/exp3

五、baseline+ RepC3K2 + SimSPPF + LK-C2PSA

改进的点:将PSA模块中的Attention修改为Deformable-LK Attention,即可变形的大核Attention;

 Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size120/120      12.8G      1.122     0.7926      1.414         45        352: 100%|██████████| 241/241 [00:41<00:00,  5.74it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 16/16 [00:03<00:00,  4.89it/s]all       1005       2152      0.865      0.805      0.867      0.556120 epochs completed in 1.539 hours.
Optimizer stripped from runs/ChineseMedTrain/exp4/weights/last.pt, 7.0MB
Optimizer stripped from runs/ChineseMedTrain/exp4/weights/best.pt, 7.0MBValidating runs/ChineseMedTrain/exp4/weights/best.pt...
WARNING ⚠️ validating an untrained model YAML will result in 0 mAP.
Ultralytics 8.3.7 🚀 Python-3.9.19 torch-2.0.1+cu117 CUDA:0 (NVIDIA GeForce RTX 4090, 24209MiB)
YOLO11RepC3K2SimSPPF_LKPSA summary (fused): 243 layers, 3,342,258 parameters, 0 gradients, 7.0 GFLOPsClass     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 16/16 [00:04<00:00,  3.94it/s]all       1005       2152      0.859      0.806      0.867      0.557ginseng         34         57      0.915       0.76      0.912      0.592Leech         20         41      0.825      0.927      0.926      0.637JujubaeFructus         18         67      0.875       0.91      0.932      0.572LiliiBulbus         18         19      0.917      0.842      0.906       0.61CoptidisRhizoma         22         22      0.912          1      0.992      0.839MumeFructus         21         98       0.79      0.816      0.826       0.46MagnoliaBark         21         45      0.866      0.933      0.961      0.587Oyster         18         24       0.74      0.958      0.947      0.713Seahorse         14         33      0.928      0.485      0.612      0.376Luohanguo         17         21      0.785      0.667      0.816      0.611GlycyrrhizaUralensis         18         25      0.924       0.98      0.973      0.547Sanqi         32         42      0.946      0.714      0.867      0.669TetrapanacisMedulla         19         20          1      0.968      0.995      0.684CoicisSemen         24         35      0.881      0.914      0.951      0.604LyciiFructus         20         32      0.835      0.625      0.783      0.463TruestarAnise         18         60      0.873      0.783      0.897      0.406ClamShell         17         67      0.758      0.642      0.745      0.489Chuanxiong         28         69      0.795      0.754      0.796      0.439Garlic         24         70      0.931      0.767       0.89      0.472GinkgoBiloba         27        119      0.814      0.866      0.917      0.584ChrysanthemiFlos         13         20      0.833        0.8      0.798      0.495
AtractylodesMacrocephala         15         23      0.742      0.826      0.813      0.595JuglandisSemen         12         45      0.899      0.592      0.767      0.391TallGastrodiae         17         35      0.843      0.686      0.818       0.45TrionycisCarapax         15         22      0.856      0.818      0.877      0.682AngelicaRoot         18         35      0.893      0.914      0.898      0.622Hawthorn         21         47      0.904      0.681      0.781      0.466CrociStigma         20         22      0.817      0.909       0.94      0.529SerpentisPeriostracum         16         16      0.886      0.973       0.97      0.751EucommiaBark         17         32      0.854      0.906       0.92      0.597ImperataeRhizoma         21         22      0.936      0.955      0.954      0.662LoniceraJaponica         12         25      0.604       0.64      0.642      0.315Zhizi         20        128      0.879      0.509      0.711      0.339Scorpion         13         21      0.861      0.905      0.967      0.706HouttuyniaeHerba         16         16      0.975      0.938      0.972      0.706EupolyphagaSinensis         19         48       0.76          1      0.947      0.614OroxylumIndicum         31         67      0.861      0.776      0.822      0.484CurcumaLonga         34         63      0.793      0.762      0.856      0.533NelumbinisPlumula         17         20      0.801        0.7      0.727      0.517ArecaeSemen         22         66      0.937      0.667      0.901      0.475Scolopendra         19         25      0.913       0.64      0.641      0.492MoriFructus         22         64      0.832      0.695      0.786      0.388
FritillariaeCirrhosaeBulbus         24         26      0.898      0.885      0.932      0.658DioscoreaeRhizoma         23         34      0.904      0.827      0.968      0.522CicadaePeriostracum         17         41      0.865      0.938      0.946       0.66PiperCubeba         21         28       0.76      0.791      0.905      0.583BupleuriRadix         22         25      0.955      0.854      0.929      0.576AntelopeHom         18         48      0.979      0.812      0.935      0.663Pangdahai         19         71      0.791      0.789      0.844      0.569NelumbinisSemen         19         51      0.787      0.796      0.734      0.435
Speed: 0.3ms preprocess, 2.0ms inference, 0.0ms loss, 0.2ms postprocess per image
Results saved to runs/ChineseMedTrain/exp4

该改进的亮点是,mAP50-95的性能得到提升,说明它在复杂场景下的识别率有所提升。

六、baseline+ RepC3K2 + SimSPPF + LK-C2PSA TriAttentionPSA

改进的点:将PSA模块中的Attention修改为 采用以下博客中的技术,即TriAttention,三重注意力机制来改进PSA模块;
https://blog.csdn.net/m0_63774211/article/details/145569867

 0                  -1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]                 1                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]                2                  -1  1      6640  ultralytics.nn.modules.block.RepC3k2         [32, 64, 1, False, 0.25]      3                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]                4                  -1  1     26080  ultralytics.nn.modules.block.RepC3k2         [64, 128, 1, False, 0.25]     5                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]              6                  -1  1     89216  ultralytics.nn.modules.block.RepC3k2         [128, 128, 1, True]           7                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]              8                  -1  1    354560  ultralytics.nn.modules.block.RepC3k2         [256, 256, 1, True]           9                  -1  1    164608  ultralytics.nn.modules.block.SimSPPF         [256, 256, 5]                 10                  -1  1    198700  ultralytics.nn.modules.block.TriC2PSA        [256, 256, 1]                 11                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          12             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           13                  -1  1    111296  ultralytics.nn.modules.block.RepC3k2         [384, 128, 1, False]          14                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          15             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           16                  -1  1     32096  ultralytics.nn.modules.block.RepC3k2         [256, 64, 1, False]           17                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]                18            [-1, 13]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           19                  -1  1     86720  ultralytics.nn.modules.block.RepC3k2         [192, 128, 1, False]          20                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]              21            [-1, 10]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           22                  -1  1    387328  ultralytics.nn.modules.block.RepC3k2         [384, 256, 1, True]           23        [16, 19, 22]  1    440422  ultralytics.nn.modules.head.Detect           [50, [64, 128, 256]]          
YOLO11RepC3K2SimSPPF_TriPSA summary: 363 layers, 2,567,634 parameters, 2,567,618 gradients, 6.5 GFLOPsTransferred 484/535 items from pretrained weights

以下是运行的结果:

 Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size120/120      13.5G      1.127     0.8044      1.416         45        352: 100%|██████████| 241/241 [00:18<00:00, 12.77it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 16/16 [00:01<00:00,  9.72it/s]all       1005       2152       0.87        0.8      0.865      0.556120 epochs completed in 0.713 hours.
Optimizer stripped from runs/ChineseMedTrain/exp5/weights/last.pt, 5.5MB
Optimizer stripped from runs/ChineseMedTrain/exp5/weights/best.pt, 5.5MBValidating runs/ChineseMedTrain/exp5/weights/best.pt...
WARNING ⚠️ validating an untrained model YAML will result in 0 mAP.
Ultralytics 8.3.7 🚀 Python-3.9.19 torch-2.0.1+cu117 CUDA:0 (NVIDIA GeForce RTX 4090, 24209MiB)
YOLO11RepC3K2SimSPPF_TriPSA summary (fused): 251 layers, 2,541,770 parameters, 0 gradients, 6.3 GFLOPsClass     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 16/16 [00:02<00:00,  6.52it/s]all       1005       2152       0.87      0.797      0.864      0.557ginseng         34         57      0.894      0.739      0.911      0.616Leech         20         41      0.881      0.902      0.931       0.66JujubaeFructus         18         67      0.903      0.834      0.921      0.579LiliiBulbus         18         19      0.889      0.841      0.873      0.578CoptidisRhizoma         22         22      0.911      0.926      0.983      0.822MumeFructus         21         98       0.76      0.786      0.817      0.427MagnoliaBark         21         45      0.809      0.844       0.92      0.572Oyster         18         24       0.83      0.917      0.942      0.697Seahorse         14         33      0.941      0.486      0.601      0.387Luohanguo         17         21       0.89      0.768      0.851      0.636GlycyrrhizaUralensis         18         25      0.926      0.998      0.978      0.594Sanqi         32         42      0.902      0.643       0.82      0.652TetrapanacisMedulla         19         20      0.981       0.95       0.99      0.678CoicisSemen         24         35      0.884      0.857      0.924      0.617LyciiFructus         20         32      0.868      0.617      0.785       0.47TruestarAnise         18         60      0.961      0.827       0.94      0.445ClamShell         17         67      0.783      0.701      0.765      0.495Chuanxiong         28         69      0.832      0.754      0.803      0.434Garlic         24         70      0.824      0.686      0.816      0.453GinkgoBiloba         27        119      0.841      0.888      0.922      0.608ChrysanthemiFlos         13         20       0.84      0.789      0.782      0.511
AtractylodesMacrocephala         15         23      0.782      0.826      0.843      0.583JuglandisSemen         12         45      0.922        0.6      0.711      0.406TallGastrodiae         17         35      0.787      0.629      0.759      0.409TrionycisCarapax         15         22       0.82      0.831      0.865      0.652AngelicaRoot         18         35      0.894      0.914      0.902      0.606Hawthorn         21         47      0.896      0.681      0.761      0.458CrociStigma         20         22      0.899      0.909      0.931      0.529
SerpentisPeriostracum         16         16      0.938      0.939      0.988      0.754EucommiaBark         17         32      0.939      0.938      0.948      0.619ImperataeRhizoma         21         22      0.942      0.955      0.989      0.654LoniceraJaponica         12         25      0.751       0.64       0.72      0.379Zhizi         20        128      0.827      0.522      0.709      0.336Scorpion         13         21      0.883      0.952      0.955      0.678HouttuyniaeHerba         16         16      0.982      0.938      0.981      0.662EupolyphagaSinensis         19         48      0.716      0.979      0.917      0.635OroxylumIndicum         31         67      0.872      0.761       0.82      0.487CurcumaLonga         34         63      0.801      0.683      0.856      0.553NelumbinisPlumula         17         20      0.794        0.7       0.74      0.504ArecaeSemen         22         66      0.953      0.697      0.926      0.494Scolopendra         19         25      0.898        0.6      0.685      0.518MoriFructus         22         64      0.861      0.675        0.8      0.382
FritillariaeCirrhosaeBulbus         24         26      0.836      0.885      0.902      0.641DioscoreaeRhizoma         23         34      0.842      0.824      0.936       0.55CicadaePeriostracum         17         41      0.857      0.951      0.893        0.6PiperCubeba         21         28      0.886      0.832      0.908      0.582BupleuriRadix         22         25       0.97       0.88       0.92      0.555AntelopeHom         18         48      0.997      0.833       0.93      0.659Pangdahai         19         71      0.812      0.789      0.844      0.574NelumbinisSemen         19         51      0.807       0.74       0.77      0.457
Speed: 0.4ms preprocess, 0.3ms inference, 0.0ms loss, 0.2ms postprocess per image
Results saved to runs/ChineseMedTrain/exp5

界面

需要搭建一个QT界面;用于展示系统;

最后一步:量化,格式导出,稳定性测试

需要将最后迭代的模型,进行量化;
再转为能在CPU下跑 onnx格式;
最后,将code+model放到测试机器上,作为现场的测试设备,100%保证演示的稳定性;

后勤:

大家提前做好出行安排,保留好收据和发票等,后续报销会用到;

总结

基于以上改进,我们优化了一个更快更好的模型,来实现中草药的检测;

最后,祝每一个参赛的同学能够取得好成绩,你们的积极参与,终将有所回报!

相关文章:

  • 电路图识图基础知识-降压启动(十五)
  • Java面试题及答案整理( 2025年最新版,持续更新...)
  • 理解继承与组合的本质:Qt 项目中的设计选择指南
  • 《射频识别(RFID)原理与应用》期末复习 RFID第一章 射频识别技术概论(知识点总结+习题巩固)
  • 前端css外边距塌陷(Margin Collapse)现象原因和解决方法
  • 核心机制:拥塞控制
  • 使用 LangChain 和 RAG 实现《斗破苍穹》文本问答系
  • Ros(控制机器人运动)
  • c++提升
  • 系统巡检常见工作
  • Python多线程编程:从GIL锁到实战优化
  • UE 5 和simulink联合仿真,如果先在UE5这一端结束Play,过一段时间以后**Unreal Engine 5** 中会出现显存不足错误
  • 深入解析Java17核心新特性(增强NullPointerException、强封装 JDK 内部 API、伪随机数生成器增强)
  • Makefile基础入门:从编译小白到自动化构建达人
  • 沉金PCB电路板制造有哪些操作要点需要注意?
  • 线程的生命周期与数量设置
  • 【TCP/IP和OSI模型以及区别——理论汇总】
  • 【工具使用】STM32CubeMX-FreeRTOS操作系统-任务、延时、定时器篇
  • DINO-R1
  • C语言-指针基础概念
  • 专门做杂志的网站/简述什么是seo
  • 南宁做网站推广的公司哪家好/铜川网络推广
  • 政府网站建设的国际/武汉最新消息今天
  • 企业手机网站建设价位/百度关键词优化大师
  • 怎么学习网站开发/微信营销成功案例8个
  • 网站建设公司联系方式/利尔化学股票股吧