吴恩达MCP课程(5):research_server_prompt_resource.py
代码
import arxiv
import json
import os
from typing import List
from mcp.server.fastmcp import FastMCPPAPER_DIR = "papers"# Initialize FastMCP server
mcp = FastMCP("research")@mcp.tool()
def search_papers(topic: str, max_results: int = 5) -> List[str]:"""Search for papers on arXiv based on a topic and store their information.Args:topic: The topic to search formax_results: Maximum number of results to retrieve (default: 5)Returns:List of paper IDs found in the search"""# Use arxiv to find the papers client = arxiv.Client()# Search for the most relevant articles matching the queried topicsearch = arxiv.Search(query = topic,max_results = max_results,sort_by = arxiv.SortCriterion.Relevance)papers = client.results(search)# Create directory for this topicpath = os.path.join(PAPER_DIR, topic.lower().replace(" ", "_"))os.makedirs(path, exist_ok=True)file_path = os.path.join(path, "papers_info.json")# Try to load existing papers infotry:with open(file_path, "r") as json_file:papers_info = json.load(json_file)except (FileNotFoundError, json.JSONDecodeError):papers_info = {}# Process each paper and add to papers_info paper_ids = []for paper in papers:paper_ids.append(paper.get_short_id())paper_info = {'title': paper.title,'authors': [author.name for author in paper.authors],'summary': paper.summary,'pdf_url': paper.pdf_url,'published': str(paper.published.date())}papers_info[paper.get_short_id()] = paper_info# Save updated papers_info to json filewith open(file_path, "w") as json_file:json.dump(papers_info, json_file, indent=2)print(f"Results are saved in: {file_path}")return paper_ids@mcp.tool()
def extract_info(paper_id: str) -> str:"""Search for information about a specific paper across all topic directories.Args:paper_id: The ID of the paper to look forReturns:JSON string with paper information if found, error message if not found"""for item in os.listdir(PAPER_DIR):item_path = os.path.join(PAPER_DIR, item)if os.path.isdir(item_path):file_path = os.path.join(item_path, "papers_info.json")if os.path.isfile(file_path):try:with open(file_path, "r") as json_file:papers_info = json.load(json_file)if paper_id in papers_info:return json.dumps(papers_info[paper_id], indent=2)except (FileNotFoundError, json.JSONDecodeError) as e:print(f"Error reading {file_path}: {str(e)}")continuereturn f"There's no saved information related to paper {paper_id}."@mcp.resource("papers://folders")
def get_available_folders() -> str:"""List all available topic folders in the papers directory.This resource provides a simple list of all available topic folders."""folders = []# Get all topic directoriesif os.path.exists(PAPER_DIR):for topic_dir in os.listdir(PAPER_DIR):topic_path = os.path.join(PAPER_DIR, topic_dir)if os.path.isdir(topic_path):papers_file = os.path.join(topic_path, "papers_info.json")if os.path.exists(papers_file):folders.append(topic_dir)# Create a simple markdown listcontent = "# Available Topics\n\n"if folders:for folder in folders:content += f"- {folder}\n"content += f"\nUse @{folder} to access papers in that topic.\n"else:content += "No topics found.\n"return content@mcp.resource("papers://{topic}")
def get_topic_papers(topic: str) -> str:"""Get detailed information about papers on a specific topic.Args:topic: The research topic to retrieve papers for"""topic_dir = topic.lower().replace(" ", "_")papers_file = os.path.join(PAPER_DIR, topic_dir, "papers_info.json")if not os.path.exists(papers_file):return f"# No papers found for topic: {topic}\n\nTry searching for papers on this topic first."try:with open(papers_file, 'r') as f:papers_data = json.load(f)# Create markdown content with paper detailscontent = f"# Papers on {topic.replace('_', ' ').title()}\n\n"content += f"Total papers: {len(papers_data)}\n\n"for paper_id, paper_info in papers_data.items():content += f"## {paper_info['title']}\n"content += f"- **Paper ID**: {paper_id}\n"content += f"- **Authors**: {', '.join(paper_info['authors'])}\n"content += f"- **Published**: {paper_info['published']}\n"content += f"- **PDF URL**: [{paper_info['pdf_url']}]({paper_info['pdf_url']})\n\n"content += f"### Summary\n{paper_info['summary'][:500]}...\n\n"content += "---\n\n"return contentexcept json.JSONDecodeError:return f"# Error reading papers data for {topic}\n\nThe papers data file is corrupted."@mcp.prompt()
def generate_search_prompt(topic: str, num_papers: int = 5) -> str:"""Generate a prompt for Claude to find and discuss academic papers on a specific topic."""return f"""Search for {num_papers} academic papers about '{topic}' using the search_papers tool. Follow these instructions:
1. First, search for papers using search_papers(topic='{topic}', max_results={num_papers})
2. For each paper found, extract and organize the following information:- Paper title- Authors- Publication date- Brief summary of the key findings- Main contributions or innovations- Methodologies used- Relevance to the topic '{topic}'3. Provide a comprehensive summary that includes:- Overview of the current state of research in '{topic}'- Common themes and trends across the papers- Key research gaps or areas for future investigation- Most impactful or influential papers in this area4. Organize your findings in a clear, structured format with headings and bullet points for easy readability.Please present both detailed information about each paper and a high-level synthesis of the research landscape in {topic}."""if __name__ == "__main__":# Initialize and run the servermcp.run(transport='stdio')
代码解释
这个research_server_prompt_resource.py
文件实现了一个基于MCP(Model Context Protocol)的研究服务器,主要用于搜索、存储和检索arXiv上的学术论文。下面是对代码的详细解释:
1. 导入和初始化
import arxiv
import json
import os
from typing import List
from mcp.server.fastmcp import FastMCPPAPER_DIR = "papers"# Initialize FastMCP server
mcp = FastMCP("research")
- 导入必要的库:
arxiv
用于访问arXiv API,json
用于处理JSON数据,os
用于文件操作 - 定义论文存储目录为
papers
- 创建一个名为"research"的FastMCP服务器实例
2. 工具函数:搜索论文
@mcp.tool()
def search_papers(topic: str, max_results: int = 5) -> List[str]:
这个函数被注册为MCP工具,用于根据主题搜索arXiv上的论文:
- 功能:搜索arXiv上与指定主题相关的论文,并将结果保存到本地
- 参数:
topic
:搜索主题max_results
:最大结果数(默认5篇)
- 返回值:找到的论文ID列表
核心实现:
- 使用arxiv客户端搜索相关论文
- 为主题创建目录(如果不存在)
- 尝试加载现有的论文信息(如果有)
- 处理每篇论文,提取标题、作者、摘要等信息
- 将论文信息保存到JSON文件中
3. 工具函数:提取论文信息
@mcp.tool()
def extract_info(paper_id: str) -> str:
这个函数被注册为MCP工具,用于根据论文ID检索特定论文的详细信息:
- 功能:在所有主题目录中搜索指定ID的论文信息
- 参数:
paper_id
:要查找的论文ID - 返回值:包含论文信息的JSON字符串,或未找到时的错误消息
实现逻辑:
- 遍历
papers
目录下的所有主题文件夹 - 检查每个文件夹中的
papers_info.json
文件 - 如果找到匹配的论文ID,返回其详细信息
4. 资源函数:获取可用文件夹
@mcp.resource("papers://folders")
def get_available_folders() -> str:
这个函数被注册为MCP资源,提供URI为papers://folders
的访问点:
- 功能:列出
papers
目录中所有可用的主题文件夹 - 返回值:包含所有主题列表的Markdown格式文本
实现方式:
- 扫描
papers
目录,查找包含papers_info.json
文件的子目录 - 将找到的主题列表格式化为Markdown文本
- 添加使用说明(如何访问特定主题)
5. 资源函数:获取主题论文
@mcp.resource("papers://{topic}")
def get_topic_papers(topic: str) -> str:
这个函数被注册为MCP资源,提供动态URI papers://{topic}
的访问点:
- 功能:获取特定主题的所有论文详细信息
- 参数:
topic
:要检索的研究主题 - 返回值:包含该主题所有论文详细信息的Markdown格式文本
实现细节:
- 根据主题名构建文件路径
- 检查并加载该主题的论文信息JSON文件
- 将论文信息格式化为结构化的Markdown文档
- 包含每篇论文的标题、ID、作者、发布日期、PDF链接和摘要
6. 提示函数:生成搜索提示
@mcp.prompt()
def generate_search_prompt(topic: str, num_papers: int = 5) -> str:
这个函数被注册为MCP提示,用于生成结构化的搜索指令:
- 功能:生成一个提示文本,指导AI如何搜索和讨论特定主题的学术论文
- 参数:
topic
:要搜索的主题num_papers
:要检索的论文数量(默认5篇)
- 返回值:格式化的提示文本
提示内容包括:
- 使用
search_papers
工具搜索论文的指令 - 如何提取和组织每篇论文的信息(标题、作者、发布日期等)
- 如何提供综合摘要(研究现状、共同主题、研究空白等)
- 如何组织和呈现结果
7. 主程序
if __name__ == "__main__":# Initialize and run the servermcp.run(transport='stdio')
当脚本作为主程序运行时,启动MCP服务器,使用标准输入/输出(stdio)作为传输方式。
总结
这个服务器实现了以下核心功能:
- 论文搜索与存储:通过arXiv API搜索论文并将结果保存到本地JSON文件
- 论文信息检索:根据论文ID或主题检索论文详细信息
- 资源访问:提供URI访问点,用于获取可用主题列表和特定主题的论文信息
- 提示生成:生成结构化提示,指导AI如何搜索和分析学术论文
这个服务器设计为与MCP兼容的工具,可以被MCP客户端(如聊天机器人)调用,为用户提供学术论文搜索和分析功能。