Opencv实用操作5 图像腐蚀膨胀
相关函数
腐蚀函数
img1_erosion = cv2.erode(img1,kernel,iterations=1)
(图片,卷积核,次数)
膨胀函数
img_dilate = cv2.dilate(img2,kernel1,iterations=1)
(图片,卷积核,次数)
实验代码
#腐蚀膨胀操作,
import matplotlib.pyplot as plt
import cv2
import numpy as npimg1 = cv2.imread("image/dige.png") #读取图片
img2 = cv2.imread("image/yuan.png")kernel = np.ones((3,3),np.uint8) #卷积核
kernel1 = np.ones((30,30),np.uint8)
img1_erosion = cv2.erode(img1,kernel,iterations=1)#(图片,卷积核,次数)
#腐蚀
img2_erosion = cv2.erode(img2,kernel1,iterations=1)
img2_erosion1 = cv2.erode(img2,kernel1,iterations=2)
img2_erosion2 = cv2.erode(img2,kernel1,iterations=3)
#膨胀
img_dilate = cv2.dilate(img2,kernel1,iterations=1)
img_dilate1 = cv2.dilate(img2,kernel1,iterations=2)
img_dilate2 = cv2.dilate(img2,kernel1,iterations=3)res_erosion = np.hstack((img2_erosion,img2_erosion1,img2_erosion2))
res_dilate = np.hstack((img_dilate,img_dilate1,img_dilate2))\cv2.imshow("DIGE",img1_erosion)
cv2.imshow("PIE",res_erosion)
cv2.imshow("PIE1",res_dilate)cv2.waitKey(0)cv2.destroyAllWindows()
实验结果
腐蚀效果
腐蚀图 原图
膨胀效果
原图
膨胀1,2,3次结果图